Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T23:28:52.475Z Has data issue: false hasContentIssue false

Introductory Section

Published online by Cambridge University Press:  03 March 2022

Thomas F. Kelly
Affiliation:
Steam Instruments, Inc.
Brian P. Gorman
Affiliation:
Colorado School of Mines
Simon P. Ringer
Affiliation:
University of Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Atomic-Scale Analytical Tomography
Concepts and Implications
, pp. 1 - 52
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Hooke, R., Micrographia. London: Jo. Martyn, and Ja. Allestry, 1665.Google Scholar
Pesché, J., “Wheel, Fire, Microscope,” presented at the Nanoventures 2003, Dallas, Texas, Mar. 2003.Google Scholar
Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Atomic-Scale Tomography: A 2020 Vision,” Microsc. Microanal., vol. 19, no. 3, pp. 652664, 2013.CrossRefGoogle ScholarPubMed
Kelly, T. F., “Atomic-Scale Analytical Tomography,” Microsc. Microanal., vol. 23, no. 1, pp. 3445, 2017, doi: https://doi.org/10.1017/S1431927617000125.Google Scholar
Tiecke, T. G., Thompson, J. D., de Leon, N. P. et al., “Nanophotonic Quantum Phase Switch with a Single Atom,” Nature, vol. 508, no. 7495, pp. 241244, Apr. 2014, doi: https://doi.org/10.1038/nature13188.CrossRefGoogle ScholarPubMed
Avouris, P., “Carbon Nanotube Electronics and Photonics,” Phys. Today, vol. 62, no. 1, pp. 3440, Jan. 2009, doi: https://doi.org/10.1063/1.3074261.Google Scholar
Leuthold, J. et al., “Single Atom Electronics and Photonics (Conference Presentation),” in Silicon Photonics: From Fundamental Research to Manufacturing, May 2018, vol. 10686, p. 1068605. doi: https://doi.org/10.1117/12.2311894.Google Scholar
Raviprasad, K., Hutchinson, C. R., Sakurai, T., and Ringer, S. P., “Precipitation Processes in an Al-2.5Cu-1.5 Mg (wt. %) Alloy Microalloyed with Ag and Si,” Acta Mater., vol. 51, no. 17, pp. 50375050, Oct. 2003, doi: https://doi.org/10.1016/S1359-6454(03)00351-3.Google Scholar
Hono, K., “Atom Probe Microanalysis and Nanoscale Microstructures in Metallic Materials,” Acta Mater., vol. 47, no. 11, pp. 31273145, Sep. 1999, doi: https://doi.org/10.1016/S1359-6454(99)00175-5.CrossRefGoogle Scholar
Chen, Z., Ren, J., Yuan, Z., and Ringer, S. P., Mater. Sci. Eng. A, vol. 787, p. 139447, 2020.CrossRefGoogle Scholar
Stephenson, L. T., Moody, M. P., Gault, B., and Ringer, S. P., “Estimating the Physical Cluster-Size Distribution within Materials Using Atom-Probe,” Microsc. Res. Tech., vol. 74, no. 9, pp. 799803, Sep. 2011, doi: https://doi.org/10.1002/jemt.20958.Google Scholar
Stephenson, L. T., Moody, M. P., Liddicoat, P. V., and Ringer, S. P., “New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data,” Microsc. Microanal., vol. 13, no. 6, pp. 448463, 2007.Google Scholar
De Geuser, F. and Gault, B., “Metrology of Small Particles and Solute Clusters by Atom Probe Tomography,” Acta Mater., vol. 188, pp. 406415, Apr. 2020, doi: https://doi.org/10.1016/j.actamat.2020.02.023.CrossRefGoogle Scholar
Voyles, P. M. and Muller, D. A., “Fluctuation Microscopy in the STEM,” Ultramicroscopy, vol. 93, no. 2, pp. 147159, Nov. 2002, doi: https://doi.org/10.1016/S0304-3991(02)00155-9.Google Scholar
Billinge, S. J. L., “Nanostructure Studied Using the Atomic Pair Distribution Function,” Z. Krist. Suppl, vol. 26, pp. 1726, 2007.Google Scholar
Zhu, C. et al., “Towards Three-Dimensional Structural Determination of Amorphous Materials at Atomic Resolution,” Phys. Rev. B, vol. 88, no. 10, p. 100201, Sep. 2013, doi: https://doi.org/10.1103/PhysRevB.88.100201.Google Scholar
Jensen, K. M. Ø. et al., “Demonstration of Thin Film Pair Distribution Function Analysis (tfPDF) for the Study of Local Structure in Amorphous and Crystalline Thin Films,” IUCrJ, vol. 2, no. 5, pp. 481489, Jul. 2015, doi: https://doi.org/10.1107/S2052252515012221.Google Scholar
Haley, D., Petersen, T., Barton, G., and Ringer, S. P., “Influence of Field Evaporation on Radial Distribution Functions in Atom Probe Tomography,” Philos. Mag., vol. 89, no. 11, pp. 925943, 2009, doi: https://doi.org/10.1080/14786430902821610.Google Scholar
Billinge, S. J. L. and Levin, I., “The Problem with Determining Atomic Structure at the Nanoscale,” Science, vol. 316, no. 5824, pp. 561565, 2007.Google Scholar
Falcone, R. et al., “Developing a vision for the infrastructure and facility needs of the materials community: Report of NSF Materials 2022 (A Subcommittee of the Mathematical and Physical Sciences Advisory Committee),” US National Science Foundation, 2012. [Online]. Available: www.nsf.gov/attachments/124926/public/DMR_Materials_2022_Report.pdfGoogle Scholar
Müller, E. W., “Field Ion Microscopy,” Science, vol. 149, no. 3684, pp. 591601, 1965.CrossRefGoogle ScholarPubMed
Panitz, J. A., “Field-Ion Microscopy – A Review of Basic Principles and Selected Applications,” J. Phys. E, vol. 15, no. 12, pp. 12811294, 1982.Google Scholar

References

Ruska, E., The Early Development of Electron Lenses and Electron Microscopy. Stuttgart: S. Hirzel Verlag, 1980.Google ScholarPubMed
Perrin, J. B., “Nobel Lecture: Discontinuous Structure of Matter,” 1926. Accessed at www.nobelprize.org/nobel_prizes/physics/laureates/1926/perrin-lecture.html.Google Scholar
Friedrich, W., Knipping, P., and Laue, M., “Interferenz-Erscheinungen bei Röntgenstrahlen,” Sitzungsber. K. Bayer. Akad. Wiss., vol. 1912, pp. 303322, 1912.Google Scholar
Friedrich, W., Knipping, P., and Laue, M., “Phénomènes d’interférence des rayons de Röntgen,” Le Radium, vol. 10, no. 2, pp. 4757, 1913.CrossRefGoogle Scholar
von Laue, M., Phys. Zeits., vol. 14, p. 421, 1913.Google Scholar
Bragg, W. L., “The Diffraction of Short Electromagnetic Waves by a Crystal,” Proc. Camb. Philos. Soc., vol. 17, pp. 4357, Nov. 1912.Google Scholar
Eckert, M., “Max von Laue and the discovery of X-ray diffraction in 1912 – Eckert – 2012 – Annalen der Physik – Wiley Online Library,” 2012. Accessed on February 5, 2017, at http://onlinelibrary.wiley.com.ezproxy.library.wisc.edu/doi/10.1002/andp.201200724/abstract.Google Scholar
Sacks, O., Uncle Tungsten: Memories of a Chemical Boyhood. New York: Alfred A. Knopf, 2001.Google Scholar
de Broglie, L., “Waves and Quanta,” Nature, vol. 112, no. 2815, p. 540, October 1923, doi: https://doi.org/10.1038/112540a0.Google Scholar
Busch, H., “Über die Wirkungsweise der Konzentrierungsspule bei der Braunschen Röhre [On the Mode of Action of the Concentrating Coil in the Braun Tube],” Arch. Elektrotechn., vol. 18, pp. 583594, 1927.Google Scholar
Eyring, C. F., Mackeown, S. S., and Millikan, R. A., “Fields Currents from Points,” Phys. Rev., vol. 31, p. 900, 1928.Google Scholar
Fowler, R. H. and Nordheim, L., “Electron Emission in Intense Electric Fields,” Proc. R. Soc. A, vol. 119, pp. 173181, 1928. doi: https://doi.org/10.1098/rspa.1928.0091.Google Scholar
Bahadur, K., “Experimental Investigation of Field Ion Emission,” Ph.D. thesis, The Pennsylvania State University, 1955.Google Scholar
Müller, E. W. and Bahadur, K., “Field Ionization of Gases at a Metal Surface and the Resolution of the Field Ion Microscope,” Phys. Rev., vol. 102, no. 3, pp. 624631, May 1956, doi: https://doi.org/10.1103/PhysRev.102.624.Google Scholar
Crewe, A. V., Wall, J., and Langmore, J., “Visibility of Single Atoms,” Science, vol. 168, no. 3937, pp. 13381340, June 1970, doi: https://doi.org/10.1126/science.168.3937.1338.CrossRefGoogle ScholarPubMed
Johnson, R. P. and Shockley, W., “An Electron Microscope for Filaments: Emission and Adsorption by Tungsten Single Crystals,” Phys. Rev., vol. 49, pp. 436440, 1936.Google Scholar
Müller, E. W., “Elektronenmikroskopische Beobachtungen von Feldkathoden,” Z. für Phys., vol. 106, pp. 541550, 1937.Google Scholar
Müller, E. W., “Auflosungsvermogen der Feldelektronenmikroskop,” Z. Phys., vol. 120, p. 270, 1943.Google Scholar
Müller, E. W., “Das Feldionenmikroskop,” Z. Phys., vol. 131, pp. 136142, 1951, doi: https://doi.org/10.1007/BF01329651.Google Scholar
Müller, E. W., “Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope,” J. Appl. Phys., vol. 27, pp. 474476, 1956.Google Scholar
Müller, E. W., “Das Auflosungsvermogen des Feldionenmikroskopes,” Z. Naturf., vol. 11a, p. 88, 1956.Google Scholar
Melmed, A. J., “Recollections of Erwin Muller’s Laboratory: The Development of FIM (1951–1956),” Appl. Surf. Sci., vol. 94/95, pp. 1725, 1996.CrossRefGoogle Scholar
Seidman, D. N., “The Direct Observation of Point Defects in Irradiated or Quenched Metals by Quantitative Field Ion Microscopy,” J. Phys. F. Met. Phys., vol. 3, pp. 393421, 1973.Google Scholar
Miller, M. K., Cerezo, A., Hetherington, M. G., and Smith, G. D. W., Atom Probe Field Ion Microscopy. Oxford: Oxford University Press, 1996.Google Scholar
Beavan, L. A., Scanlan, R. M., and Seidman, D. N., “The Defect Structure of Depleted Zones in Irradiated Tungsten,” ACTA Metall., vol. 19, pp. 13391350, 1971.Google Scholar
Vurpillot, F., Gilbert, M., and Deconihout, B., “Towards the Three-Dimensional Field Ion Microscope,” Surf. Interface Anal., vol. 39, no. 2–3, pp. 273277, 2007.Google Scholar
Xu, R., Chen, C.-C, Wu, L et al., “Three-Dimensional Coordinates of Individual Atoms in Materials Revealed by Electron Tomography,” Nat. Mater., vol. 14, no. 11, pp. 10991103, September 2015, doi: https://doi.org/10.1038/nmat4426.Google Scholar
Panitz, J. A., “Anecdotes from an Atom-Probe Original,” Microsc. Microanal., vol. 4, pp. 7475, 1998.CrossRefGoogle Scholar
Müller, E. W., Panitz, J. A., and McLane, S. B., “The Atom-Probe Field Ion Microscope,” Rev. Sci. Instrum., vol. 39, pp. 8386, 1968.Google Scholar
Miller, M. K. and Smith, G. D. W., “Atom Probe Microanalysis of a Pearlitic Steel,” Met. Sci., vol. 11, no. 7, p. 249, 1977.Google Scholar
Panitz, J. A., “The 10 cm Atom Probe,” Rev Sci. Instrum., vol. 44, pp. 10341038, 1973.Google Scholar
Panitz, J. A., “Imaging Atom-Probe Mass Spectroscopy,” Prog. Surf. Sci., vol. 8, no. 6, pp. 219262, 1978, doi: https://doi.org/16/0079-6816(78)90002-3.CrossRefGoogle Scholar
Panitz, J. A. and Foesch, J. A., “Areal Detection Efficiency of Channel Electron Multiplier Arrays,” Rev. Sci. Instrum., vol. 47, pp. 4449, April 1975.Google Scholar
Kellogg, G. L. and Tsong, T. T., “Pulsed-Laser Atom-Probe Field-Ion Microscopy,” J. Appl. Phys., vol. 51, pp. 11841194, 1980.Google Scholar
Poschenrieder, W. P., “Multiple-Focusing Time of Flight Mass Spectrometers Part I. TOFMS with Equal Momentum Acceleration,” Int. J. Mass Spectrom. Ion. Phys., vol. 6, pp. 413426, 1971.Google Scholar
Poschenrieder, W. P., “Multiple-Focusing Time-of-Flight Mass Spectrometers Part II. TOFMS with Equal Energy Acceleration,” Int. J. Mass Spectrom. Ion. Phys., vol. 9, pp. 357373, 1972.CrossRefGoogle Scholar
Miller, M. K., “Atom Probe Field Ion Microscopy,” in Microbeam Analysis Society Annual Meeting, Albuquerque, NM, 1986, pp. 343347.Google Scholar
Cerezo, A., Godfrey, T. J., and Smith, G. D. W., “Application of a Position-Sensitive Detector to Atom Probe Microanalysis,” Rev. Sci. Instrum., vol. 59, no. 6, pp. 862866, 1988.Google Scholar
Cerezo, A., Godfrey, T. J., and Smith, G. D. W., “Development and Initial Applications of a Position-Sensitive Atom Probe,” J. Phys., vol. 49, p. C6/25–30, 1988.Google Scholar
Blavette, D., Deconihout, B., Bostel, A. et al., “The Tomographic Atom Probe: A Quantitative Three-Dimensional Nanoanalytical Instrument on an Atomic Scale,” Rev. Sci. Instrum., vol. 64, pp. 29112919, 1993.Google Scholar
Blavette, D., Bostel, A., Sarrau, J. M., Deconihout, B., and Menand, A., “An Atom Probe for Three-Dimensional Tomography,” Nature, vol. 363, pp. 432435, 1993.Google Scholar
Nishikawa, O. and Kimoto, M., “Toward a Scanning Atom Probe – Computer Simulation of Electric Field,” Appl. Surf. Sci., vol. 76/77, pp. 424430, 1994.Google Scholar
Nishikawa, O., Kimoto, M., Iwatsuki, M., and Ishikawa, Y., “Development of a Scanning Atom Probe,” J. Vac. Sci. Technol. B, vol. 13, no. 2, pp. 599602, 1995.Google Scholar
Prosa, T. J. and Larson, D. J., “Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography,” Microsc. Microanal., vol. 23, no. 2, 2017, doi: https://doi.org/10.1017/S1431927616012642.Google Scholar
Kelly, T. F., Camus, P. P., Larson, D. J., Holzman, L. M., and Bajikar, S. S., “On the Many Advantages of Local-Electrode Atom Probes,” Ultramicroscopy, vol. 62, pp. 2942, 1996.Google Scholar
Kelly, T. F. and Larson, D. J., “Local Electrode Atom Probes,” Mat. Char., vol. 44, pp. 5985, 2000.Google Scholar
Cerezo, A., Grovenor, C. R. M., and Smith, G. D. W., “Pulsed Laser Atom Probe Analysis of III-V Compound Semiconductors,” J. Phys., vol. 47-C2, pp. 309314, 1986.Google Scholar
Cerezo, A., Grovenor, C. R. M., and Smith, G. D. W., “Pulsed Laser Atom Probe Analysis of Semiconductor Materials,” J. Microsc., vol. 141, pp. 155170, 1986.Google Scholar
Gault, B. et al., “Design of a Femtosecond Laser Assisted Tomographic Atom Probe,” Rev. Sci. Instrum., vol. 77, no. 4, p. 043705/1–8, Jan. 2006.Google Scholar
Bunton, J. H., Olson, J. D., Lenz, D., and Kelly, T. F., “Advances in Pulsed-Laser Atom Probe: Instrument and Specimen Design for Optimum Performance,” Microsc. Microanal., vol. 13, pp. 418427, 2007.Google Scholar
Chen, Y.-S., Liang, J., Rosenthal, A. et al., “Observation of Hydrogen Trapping at Dislocations, Grain Boundaries, and Precipitates,” Science, vol. 367, no. 6474, pp. 171175, 2020, doi: https://doi.org/10.1126/science.aaz0122.Google Scholar
Tang, S., Xin, T., Xu, W. et al., “Precipitation Strengthening in an Ultralight Magnesium Alloy,” Nat. Commun., vol. 10, p. 1003, 2019.Google Scholar
McCarroll, I. E., Bagot, P. A. J., Devaraj, A., Perea, D. E., and Cairney, J. M., “New Frontiers in Atom Probe Tomography: A Review of Research Enabled by Cryo and/or Vacuum Transfer Systems,” Mater. Today Adv., vol. 7, September, p. 100090, 2020, https://doi.org/10.1016/j.mtadv.2020.100090.Google Scholar
Macauleym, C., Heller, M., Rausch, A., Ku, F., and Felfer, P., “A Versatile Cryo-Transfer System, Connecting Cryogenic Focused Ion Beam Sample Preparation to Atom Probe Microscopy,” PLOS ONE, vol. 16, no. 1, p. e0245555, 2021, https://doi.org/10.1371/journal.pone.0245555.Google Scholar
Cerezo, A., Hyde, J. M., Sijbrandij, S., and Smith, G. D. W., “Data Analysis in the Optical PoSAP,” Appl. Surf. Sci., vol. 94–95, pp. 457463, Aug. 1995.Google Scholar
Ercius, P., Boese, M., Duden, T., and Dahmen, U., “Operation of TEAM I in a User Environment at NCEM,” Microsc. Microanal., vol. 18, no. 4, pp. 676683, 2012, doi: https://doi.org/10.1017/S1431927612001225.Google Scholar
Hawkes, P. W. and Kasper, E., Principles of Electron Optics, Volume 1: Basic Geometrical Optics. Academic Press, 1996.Google Scholar
Hawkes, P. W. and Kasper, E., Principles of Electron Optics, Volume 2: Applied Geometrical Optics. Academic Press, 1996.Google Scholar
Knoll, M. and Ruska, E., “Das Elektronenmikroskop,” Z. Phys., vol. 78, pp. 318339, 1932.Google Scholar
Crewe, A. V., “Scanning Electron Microscopes: Is High Resolution Possible?,” Science, vol. 154, no. 3750, pp. 729738, 1966.Google Scholar
Haider, M., Rose, H., Uhlemann, S. et al., “A Spherical-Aberration-Corrected 200 kV Transmission Electron Microscope,” Ultramicroscopy, vol. 75, no. 1, pp. 5360, Oct. 1998, doi: https://doi.org/10.1016/S0304-3991(98)00048-5.Google Scholar
Batson, P. E., Dellby, N., and Krivanek, O. L., “Sub-ångstrom Resolution using Aberration Corrected Electron Optics,” Nature, vol. 418, no. 6898, pp. 617620, Aug. 2002, doi: https://doi.org/10.1038/nature00972.Google Scholar
Larson, D. J., Prosa, T. J., Ulfig, R. M., Geiser, B P., and Kelly, T. F., Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer, 2013.Google Scholar
Scherzer, O., “Some Defects of Electron Lenses,” Z. Phys., vol. 101, pp. 593603, 1936.Google Scholar
Scherzer, O., “Die imaginäre Einheit in der Diracgleichung,” Ann. Phys., vol. 425, no. 7, pp. 591593, 1938, doi: https://doi.org/10.1002/andp.19384250704.Google Scholar
Scherzer, O., “Sphärische und chromatische Korrektur von Elektronen-Linsen,” Optik, vol. 2, pp. 114132, 1947.Google Scholar
Crewe, A. V., “Electron Microscopes using Field Emission Source,” Surf. Sci., vol. 48, no. 1, pp. 152160, Mar. 1975, doi: https://doi.org/10.1016/0039-6028(75)90314-3.Google Scholar
Devaraj, A. et al., “Three-Dimensional Nanoscale Characterisation of Materials by Atom Probe Tomography,” Int. Mater. Rev., vol. 63, no. 2, pp. 134, 2017, doi: https://doi.org/10.1080/09506608.2016.1270728.Google Scholar
Deltrap, J., “Correction of spherical aberration of electron lenses,” Ph.D. dissertation, University of Cambridge, 1964.Google Scholar
Crewe, A. V. and Beck, V., “A Quadrupole-Octupole Corrector for a 100 KEV STEM,” in Proc. 32nd Ann. EMSA Mtg., 1974, pp. 426427.Google Scholar
Crewe, A. V., “The Sextupole as Corrector,” Electron Microsc., vol. 1, pp. 3637, 1980.Google Scholar
Crewe, A. V. and Kopf, D., “A Sextupole System for the Correction of Spherical Aberration,” Optik, vol. 55, pp. 110, 1980.Google Scholar
Crewe, A. V., “A System for the Correction of Axial Aperture Aberrations in Electron Lenses,” Optik, vol. 60, pp. 271281, 1982.Google Scholar
Crewe, A. V. and Jiye, X., “Correction of Spherical and Coma Aberrations with a Sextupole-Round Lens-Sextupole System,” Optik, vol. 69, pp. 141146, 1985.Google Scholar
Jiye, X., Shao, Z., and Crewe, A. V., “The Wave Electron Optical Properties of a Magnetic Round Lens Corrected with Sextupoles,” Optik, no. 70, pp. 1522, 1985.Google Scholar
Shao, Z. and Crewe, A. V., “Spherical Aberrations of Multipoles,” J. Appl. Phys., vol. 62, no. 4, pp. 11491153, Aug. 1987, doi: https://doi.org/10.1063/1.339663.Google Scholar
Chen, E. G. and Mu, C. J., in Proceedings of the International Symposium on Electron Microscopy, Beijing, China, Singapore, 1990, vol. K. Kuo and J. Yao, eds., pp. 2835.Google Scholar
Krivanek, O. L., Dellby, N., Spence, A. J., Camps, R. A., and Brown, L. M., “Aberration Correction in the STEM,” in Electron Microscopy and Analysis 1997, 1997, vol. 153, pp. 3540.Google Scholar
Zach, J. and Haider, M., “Correction of Spherical and Chromatic Aberration in a Low Voltage SEM,” Optik, vol. 93, pp. 112118, 1995.Google Scholar
Zach, J. and Haider, M., “Aberration Correction in a Low Voltage SEM by a Multipole Corrector,” Nucl. Instrum. Methods Phys. Res. A, vol. 363, pp. 316325, 1995.Google Scholar
Dahmen, U., Erni, R., Radmilovic, V. et al., “Background, Status and Future of the Transmission Electron Aberration-Corrected Microscope Project,” Philos. Trans. Roy. Soc. A, vol. 367, p. 3795, 2009.Google Scholar

References

Seynaeve, P. C. and Broos, J. I., “The History of Tomography,” J. Belg. Radiol., vol. 78, no. 5, pp. 284288, Oct. 1995.Google Scholar
Kisielowski, C. et al., “Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit,” Microsc. Microanal., vol. 14, no. 5, pp. 469477, Oct. 2008, doi: https://doi.org/10.1017/S1431927608080902.Google Scholar
Dahmen, U., Erni, R., Radmilovic, V. et al., “Background, Status and Future of the Transmission Electron Aberration-Corrected Microscope Project,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1903, pp. 37953808, Sep. 2009, doi: https://doi.org/10.1017/10.1098/rsta.2009.0094.Google Scholar
Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Atomic-Scale Tomography: A 2020 Vision,” Microsc. Microanal., vol. 19, no. 3, pp. 652664, 2013.Google Scholar
Kelly, T. F., “Atomic-Scale Analytical Tomography,” Microsc. Microanal., vol. 23, no. 1, pp. 3445, 2017, doi: https://doi.org/10.1017/10.1017/S1431927617000125.Google Scholar
Gault, B., Moody, M. P., Cairney, J. M., and Ringer, S. P., Atom Probe Microscopy, vol. 160. New York: Springer, 2012.Google Scholar
Larson, D. J., Prosa, T. J., Ulfig, R. M., Geiser, B. P., and Kelly, T. F., Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer, 2013.Google Scholar
Miller, M. K. and Forbes, R. G., Atom-Probe Tomography: The Local Electrode Atom Probe, 1st ed. Springer, 2014.Google Scholar
Lefebvre, W., Vurpillot, F., and Sauvage, X., Atom Probe Tomography: Put Theory into Practice. London: Academic Press, 2016.Google Scholar
Prosa, T. J., Geiser, B. P., Lawrence, D., Olson, D., and Larson, D. J., “Developing Detection Efficiency Standards for Atom Probe Tomography,” Proc. SPIE., vol. 9173, p. 917307, 2014, doi: https://doi.org/10.1017/10.1117/12.2062211.Google Scholar
Saxey, D. W., “Correlated Ion Analysis and the Interpretation of Atom Probe Mass Spectra,” Ultramicroscopy, vol. 111, no. 6, pp. 473479, 2011, doi: https://doi.org/10.1017/10.1016/j.ultramic.2010.11.021.CrossRefGoogle ScholarPubMed
Gault, B. et al., “Behavior of Molecules and Molecular Ions Near a Field Emitter,” New J. Phys., vol. 18, no. 3, p. 033031, 2016.Google Scholar
Irwin, K. D., “Seeing with Superconductors,” Scientific American, pp. 8694, Nov. 01, 2006.Google Scholar
Suttle, J. R., Kelly, T. F., and McDermott, R. F., “A Superconducting Ion Detection Scheme for Atom Probe Tomography,” presented at the Atom Probe Tomography and Microscopy 2016: from Science to Industry, Gyeongju, Korea, Jun. 2016.Google Scholar
Bas, P., Bostel, A., Deconihout, B., and Blavette, D., “A General Protocol for the Reconstruction of 3D Atom Probe Data,” Appl. Surf. Sci., vol. 87/88, pp. 298304, 1995.Google Scholar
Loberg, B. and Norden, H., “Observations of the Field-Evaporation End Form of Tungsten,” Arkiv för Fysik, vol. 39, no. 25, pp. 383395, 1968.Google Scholar
Walls, J. M. and Southworth, H. N., “Magnification in the Field-Ion Microscope,” J. Phys. D: Appl. Phys., vol. 12, no. 5, pp. 657667, 1979.Google Scholar
Gipson, G. S. and Eaton, H. C., “The Electric Field Distribution in the Field Ion Microscope as a Function of Specimen Shank,” J. Appl. Phys., vol. 51, no. 10, pp. 55375539, 1980.Google Scholar
Vurpillot, F., Bostel, A., and Blavette, D., “The Shape of Field Emitters and the Ion Trajectories in Three-Dimensional Atom Probes,” J. Microsc., vol. 196, no. 3, pp. 332336, Apr. 1999.Google Scholar
Du, S. et al., “Full Tip Imaging in Atom Probe Tomography,” Ultramicroscopy, vol. 124, no. 0, pp. 96101, Jan. 2013, doi: https://doi.org/10.1017/10.1016/j.ultramic.2012.08.014.Google Scholar
Beinke, D., Oberdorfer, C., and Schmitz, G., “Towards an Accurate Volume Reconstruction in Atom Probe Tomography,” Ultramicroscopy, vol. 165, pp. 3441, 2016.CrossRefGoogle ScholarPubMed
Dunin-Borkowski, R. E., Kasama, T., McCartney, M. R., and Smith, D. J., “Electron Holography,” in Science of Microscopy, 2 vols., Hawkes, P. W. and Spence, J. C. H., eds. New York: Springer, 2007, pp. 11411195.Google Scholar
Rose, H., “Nonstandard Imaging Methods in Electron Microscopy,” Ultramicroscopy, vol. 2, no. 2–3, pp. 251267, Jan. 1976, doi: https://doi.org/10.1017/10.1016/S0304-3991(76)91538-2.Google Scholar
Dekkers, N. H. and Lang, H. D., “Differential Phase-Contrast in a STEM,” Optik, vol. 41, no. 4, pp. 452456, 1974.Google Scholar
Kelly, T. F. et al., “Toward Atomic-Scale Tomography: The ATOM Project,” Microsc. Microanal., vol. 17 (Suppl 2), pp. 708709, 2011, doi: https://doi.org/10.1017/10.1017/S1431927611004417.Google Scholar
Kelly, T. F., Miller, M. K., Rajan, K., and Ringer, S. P., “Visions of Atomic-Scale Tomography,” Micros. Today, vol. 20, no. 3, pp. 1216., 2012, doi: https://doi.org/10.1017/10.1017/S1551929512000211.Google Scholar
Miller, M. K., Kelly, T. F., Rajan, K., and Ringer, S. P., “The Future of Atom Probe Tomography,” Mater. Today, vol. 15, no. 4, pp. 158165, Apr. 2012.Google Scholar
Gorman, B. P., Shepard, J. D., Kirchhofer, R., Olson, J. D., and Kelly, T. F., “Development of Atom Probe Tomography with In-situ STEM Imaging and Diffraction,” Microsc. Microanal., vol. 17, no. S2, pp. 710711, 2011, doi: https://doi.org/10.1017/10.1017/S1431927611004429.Google Scholar
Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US, 2011.Google Scholar
Keast, V. J., Scott, A. J., Brydson, R., Williams, D. B., and Bruley, J., “Electron Energy-Loss Near-Edge Structure – A Tool for the Investigation of Electronic Structure on the Nanometre Scale,” J. Microsc., vol. 203, no. 2, pp. 135175, Aug. 2001, doi: https://doi.org/10.1017/10.1046/j.1365-2818.2001.00898.x.Google Scholar
Sakaguchi, N., Tanda, L., and Kunisada, Y., “Improving the Measurement of Dielectric Function by TEM-EELS: Avoiding the Retardation Effect,” Microscopy, vol. 65, no. 5, pp. 415421, Oct. 2016, doi: https://doi.org/10.1017/10.1093/jmicro/dfw023.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×