Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T11:02:35.437Z Has data issue: false hasContentIssue false

5 - The Genetic Background of Atherosclerosis in Ancient Mummies

from Part I - Evidence from Mummified Tissues

Published online by Cambridge University Press:  31 March 2023

Michaela Binder
Affiliation:
Novetus GmbH Archaeological Services
Charlotte A. Roberts
Affiliation:
Durham University
Daniel Antoine
Affiliation:
British Museum, London
Get access

Summary

This chapter aims to outline current knowledge concerning the genetic background of cardiovascular disease (CVD) and its study in ancient human remains. This is demonstrated by the application of a palaeogenetic analysis to the mummy of the Tyrolean Iceman, who presented with both arterial calcifications and a strong genetic predisposition for heart disease. Further discussion highlights how the study of ancient humans can provide new insights into the genetic background of CVD and its intersection with risk factors related to lifestyle.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allam, A. H., Thompson, R. C., Wann, L.S., Miyamoto, M.I. and Thomas, G.S. (2009). Computed tomographic assessment of atherosclerosis in ancient Egyptian mummies. Journal of the American Medical Association, 302(19), 2091–4.Google Scholar
Allam, A. H., Thompson, R. C., Wann, L. S., et al. (2011). Atherosclerosis in ancient Egyptian mummies: The Horus study. Journal of the American College of Cardiology Cardiovascular Imaging, 4, 315–27.Google Scholar
Aufderheide, A. C., Salo, W., Madden, M., et al. (2004). A 9,000-year record of Chagas’ disease. Proceedings of the National Academy of Sciences USA, 101(7), 2034–9.CrossRefGoogle ScholarPubMed
Barfield, L. (1992). Modisches aus der Jungsteinzeit Werkzeuge und Kleidung. In Koller, E., Lippert, A. and Payrleitner, A., eds., Der Zeuge aus dem Gletscher: das Rätsel der frühen Alpen-Europäer. Wien, Austria: Ueberreuter, pp. 180–7.Google Scholar
Binder, M. and Roberts, C. A. (2014). Calcified structures associated with human skeletal remains: Possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800BC). International Journal of Paleopathology, 6, 20–9.Google Scholar
Bos, K. I., Schuenemann, V. J., Golding, G. B., et al. (2011). A draft genome of Yersinia pestis from victims of the Black Death. Nature, 478, 506–10.CrossRefGoogle ScholarPubMed
Bos, K. I., Harkins, K. M., Herbig, A., et al. (2014). Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 514(7523), 494–7.Google Scholar
Brandt, G., Haak, W., Adler, C. J., et al. (2013). Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science, 342, 257–61.CrossRefGoogle ScholarPubMed
Brandt, G,, Szécsényi-Nagy, A., Roth, C., Alt, K. W. and Haak, W. (2015). Human paleogenetics of Europe: The known knowns and the known unknowns. Journal of Human Evolution, 79, 7392.CrossRefGoogle ScholarPubMed
Chen, S. N., Ballantyne, C. M., Gotto, A. M. Jr. and Marian, A. J. (2009). The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis. BMC Cardiovascular Disorders, 9, 3.Google Scholar
Coia, V., Cipollini, G., Anagnostou, P., et al. (2016). Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman. Scientific Reports, 6, 18932.Google Scholar
Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., et al. (2002). The survival of organic matter in bone: A review. Archaeometry, 44, 383–94.Google Scholar
Cooper, A. and Poinar, H. N. (2000). Ancient DNA: Do it right or not at all. Science, 289, 1139.CrossRefGoogle ScholarPubMed
Coronary Artery Disease (C4D) Genetics Consortium. (2011). A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nature Genetics, 43, 339–44.Google Scholar
Cox, S. L., Ruff, C. B., Maier, R. M. and Mathieson, I. (2019). Genetic contributions to variation in human stature in prehistoric Europe. Proceedings of the National Academy of Sciences USA, 116(43), 21484–92.Google Scholar
Deloukas, P., Kanoni, S., Willenborg, C., et al. (2013). Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 45, 2533.Google Scholar
Dickson, J. H., Oeggl, K., Holden, T. G., et al. (2000). The omnivorous Tyrolean Iceman: Colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses. Philosophical Transactions of the Royal Society B, Biological Sciences, 355, 1843–9.Google Scholar
Do, R., Stitziel, N. O., Won, H. H., et al. (2015). Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 518, 102–6.Google Scholar
Duggan, A. T., Perdomo, M. F., Piombino-Mascali, D., et al. (2016). Seventeenth century variola virus reveals the recent history of smallpox. Current Biology, 26(24), 3407–12.Google Scholar
Erdmann, J., Grosshennig, A., Braund, P. S., et al. (2009). New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nature Genetics, 41, 280–2.Google Scholar
Erdmann, J., Kessler, T., Munoz Venegas, L. and Schunkert, H. (2018). A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovascular Research, 114(9), 1241–57.Google Scholar
Ermini, L., Olivieri, C., Rizzi, E., et al. (2008). Complete mitochondrial genome sequence of the Tyrolean Iceman. Current Biology, 18, 1687–93.Google Scholar
Fernandes, D. M., Mittnik, A., Olalde, I., et al. (2020). The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nature Ecology and Evolution, 4, 334–45.Google Scholar
Francalacci, P., Morelli, L., Angius, A., et al. (2013). Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-chromosome phylogeny. Science, 341, 565–9.Google Scholar
Gaber, O. and Kunzel, K. H. (1998). Man from the Hauslabjoch. Experimental Gerontology, 33(7–8), 655–60.Google Scholar
Gaeta, R., Fornaciari, A., Izzetti, R., Caramella, D. and Giuffra, V. (2019). Severe atherosclerosis in the natural mummy of Girolamo Macchi (1648–1734), ‘major writer’ of Santa Maria della Scala Hospital in Siena (Italy). Atherosclerosis, 280, 6674.Google Scholar
Gilbert, M. T., Barnes, I., Collins, M.J., et al. (2005). Long-term survival of ancient DNA in Egypt: Response to Zink and Nerlich (2003). American Journal of Physical Anthropology, 128(1), 110–14.Google Scholar
Gómez-Carballa, A., Catelli, L., Pardo-Seco, J., et al. (2015). The complete mitogenome of a 500-year-old Inca child mummy. Scientific Reports, 5, 16462.Google Scholar
Gostner, P. and Egarter Vigl, E. (2002). Report of radiological-forensic findings on the Iceman. Journal of Archaeological Science, 29, 323–6.Google Scholar
Gostner, P., Pernter, P., Bonatti, G., Graefen, A. and Zink, A. R. (2011). New radiological insights into the life and death of the Tyrolean Iceman. Journal of Archaeological Science, 38, 3425–31.Google Scholar
Green, R. E., Krause, J., Briggs, A.W., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710–22.Google Scholar
Hajdinjak, M., Fu, Q., Hübner, A., et al. (2018). Reconstructing the genetic history of late Neanderthals. Nature, 555(7698), 652–6.Google Scholar
Handt, O., Richards, M., Trommsdorff, M., et al. (1994). Molecular genetic analyses of the Tyrolean Ice Man. Science, 264, 1775–8.Google Scholar
Harbeck, M., Seifert, L., Hänsch, S., et al. (2013). Yersinia pestis DNA from skeletal remains from the sixth century AD reveals insights into Justinianic Plague. PLoS Pathogens, 9(5), e1003349.Google Scholar
Hawass, Z., Gad, Y. Z., Ismail, S., et al. (2010). Ancestry and pathology in King Tutankhamun’s family. Journal of the American Medical Association, 303, 638–47.Google Scholar
Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. and Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312, 282–4.Google Scholar
Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. and Pääbo, S. (2001). Ancient DNA. Nature Reviews Genetics, 2, 353–9.Google Scholar
Itan, Y., Powell, A., Beaumont, M. A., Burger, J. and Thomas, M. G. (2009). The origins of lactase persistence in Europe. PLoS Computational Biology, 5, e1000491.Google Scholar
Janko, M., Stark, R. W. and Zink, A. (2012). Preservation of 5300 year old red blood cells in the Iceman. Journal of the Royal Society Interface, 9, 2581–90.Google Scholar
Jannot, A. S., Ehret, G. and Perneger, T. (2015). P <5 × 10–8 has emerged as a standard of statistical significance for genome-wide association studies. Journal of Clinical Epidemiology, 68, 460–5.Google Scholar
Kahila Bar-Gal, G., Kim, M. J., Klein, A., et al. (2012). Tracing hepatitis B virus to the sixteenth century in a Korean mummy. Hepatology, 56, 1671–80.Google Scholar
Kay, G. L., Sergeant, M. J., Zhou, Z., et al. (2015). Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nature Communications, 6, 6717.CrossRefGoogle ScholarPubMed
Keller, A., Graefen, A., Ball, M., et al. (2012). New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nature Communications, 3, 698.Google Scholar
Keller, M., Spyrou, M. A., Scheib, C.L., et al. (2019). Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proceedings of the National Academy of Sciences USA, 116(25), 12363–72.Google Scholar
Kessler, T., Vilne, B. and Schunkert, H. (2016). The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Molecular Medicine, 8, 688701.Google Scholar
Key, F. M., Posth, C., Krause, J., Herbig, A. and Bos, K. I. (2017). Mining metagenomic data sets for ancient DNA: Recommended protocols for authentication. Trends in Genetics, 33(8), 508–20.Google Scholar
Kim, M. J., Kim, Y. S., Oh, C. S., et al. (2015). Anatomical confirmation of computed tomography-based diagnosis of the atherosclerosis discovered in seventeenth century Korean mummy. PLoS One, 10(3), e0119474.Google Scholar
Kirsanow, K. and Burger, J. (2012). Ancient human DNA. Annals of Anatomy, 194, 121–32.Google Scholar
Krause, J., Fu, Q., Good, J. M., et al. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 464(7290), 894–7.Google Scholar
Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362, 709–15.Google Scholar
Loh, P.-R., Danecek, P., Palamara, P. F., et al. (2016). Reference-based phasing using the Haplotype Reference Consortium panel. Nature Genetics, 48, 1443–8.Google Scholar
Loreille, O., Ratnayake, S., Bazinet, A. L., et al. (2018). Biological sexing of a 4000-year-old Egyptian mummy head to assess the potential of nuclear DNA recovery from the most damaged and limited forensic specimens. Genes (Basel), 9(3), 135.Google Scholar
Luke, M. M. (2009). Polymorphisms associated with both noncardioembolic stroke and coronary heart disease: Vienna Stroke Registry. Cerebrovascular Diseases, 28, 499504.CrossRefGoogle ScholarPubMed
McPherson, R., Pertsemlidis, A., Kavaslar, N., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488–91.Google Scholar
Maixner, F., Overath, T., Linke, D., et al. (2013). Paleoproteomic study of the Iceman’s brain tissue. Cellular and Molecular Life Sciences, 70(19), 3709–22.Google Scholar
Maixner, F., Krause-Kyora, B., Turaev, D., et al. (2016). The 5300-year-old Helicobacter pylori genome of the Iceman. Science, 351, 162–5.Google Scholar
Maixner, F., Turaev, D., Cazenave-Gassiot, A., et al. (2018). The Iceman’s last meal consisted of fat, wild meat, and cereals. Current Biology, 28(14), 2348–2355.e9.CrossRefGoogle ScholarPubMed
Marciniak, S. and Perry, G. H. (2017). Harnessing ancient genomes to study the history of human adaptation. Nature Reviews Genetics, 18(11), 659–74.Google Scholar
Marenberg, M. E., Risch, N., Berkman, L. F., Floderus, B. and de Faire, U. (1994). Genetic susceptibility to death from coronary heart disease in a study of twins. New England Journal of Medicine, 330, 1041–6.Google Scholar
Marota, I., Basile, C., Ubaldi, M. and Rollo, F. (2002). DNA decay rate in papyri and human remains from Egyptian archaeological sites. American Journal of Physical Anthropology, 117(4), 310–18.Google Scholar
Marquet, P. A., Santoro, C. M., Latorre, C., et al. (2012). Emergence of social complexity among coastal hunter-gatherers in the Atacama Desert of northern Chile. Proceedings of the National Academy of Sciences USA, 109(37), 14754–60.Google Scholar
Mathieson, I., Alpaslan-Roodenberg, S., Posth, C., et al. (2018). The genomic history of southeastern Europe. Nature, 555, 197203.Google Scholar
Meyer, M., Fu, Q., Aximu-Petri, A., et al. (2014). A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature, 505, 403–6.Google Scholar
Meyer, M., Arsuaga, J. L., de Filippo, C., et al. (2016). Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 53, 504–7.Google Scholar
Molto, J. E., Loreille, O., Mallott, E. K., et al. (2017). Complete mitochondrial genome sequencing of a burial from a Romano-Christian cemetery in the Dakhleh Oasis, Egypt: Preliminary indications. Genes (Basel), 8(10), 262.Google Scholar
Müller, W., Fricke, H., Halliday, A. N., McCulloch, M. T. and Wartho, J. A. (2003). Origin and migration of the Alpine Iceman. Science, 302, 862–6.Google Scholar
Murphy, W. A., zur Nedden, D., Gostner, P., et al. (2003). The Iceman: Discovery and imaging. Radiology, 226, 614–29.CrossRefGoogle ScholarPubMed
Myers, R. H., Kiely, D. K., Cupples, L. A. and Kannel, W. B. (1990). Parental history is an independent risk factor for coronary artery disease: The Framingham Study. American Heart Journal, 120, 963–9.Google Scholar
Nerlich, A. G., Haas, C. J., Zink, A., Szeimies, U. and Hagedorn, H. G. (1997). Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet, 350(9088), 1404.Google Scholar
Newton-Cheh, C. (2009). A common variant at 9p21 is associated with sudden and arrhythmic cardiac death. Circulation, 120, 2062–8.Google Scholar
Oeggl, K., Kofler, W., Schmidl, A., et al. (2007). The reconstruction of the last itinerary of ‘Ötzi’, the Neolithic Iceman, by pollen analyses from sequentially sampled gut extracts. Quaternary Science Reviews, 26, 853–61.Google Scholar
Orlando, L., Ginolhac, A., Zhang, G., et al. (2013). Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 499, 74–8.Google Scholar
Pääbo, S. (1984). Über den Nachweis von DNA in altägyptischen Mumien. Das Altertum, 30, 213–18.Google Scholar
Pääbo, S. (1985). Molecular cloning of ancient Egyptian mummy DNA. Nature, 314, 644–5.Google Scholar
Pääbo, S., Poinar, H., Serre, D., et al. (2004). Genetic analyses from ancient DNA. Annual Review of Genetics, 38, 645–79.Google Scholar
Patterson Ross, Z., Klunk, J., Fornaciari, G., et al. (2018). The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathogens, 14, e1006750.Google Scholar
Pernter, P., Gostner, P., Egarter-Vigl, E. and Rühli, F. J. (2007). Radiologic proof for the Iceman’s cause of death (ca 5300 BP). Journal of Archaeological Science, 34, 1784–6.Google Scholar
Pernter, P., Pedrinolla, B. and Gostner, P. (2018). Das Herz des Mannes aus dem Eis. Ein Paläoradiologischer Fall. Rofo, 190(1), 61–4.Google Scholar
Piombino-Mascali, D., Jankauskas, R., Tamošiūnas, A., et al. (2014). Atherosclerosis in mummified human remains from Vilnius, Lithuania (eighteenth–nineteenth centuries AD): A computed tomographic investigation. American Journal of Human Biology, 26(5), 676–81.Google Scholar
Prüfer, K., Racimo, F., Patterson, N., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–9.CrossRefGoogle ScholarPubMed
Rasmussen, M., Li, Y., Lindgreen, S., et al. (2010). Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature, 463, 757–62.Google Scholar
Rollo, F., Ermini, L., Luciani, S., et al. (2006). Fine characterization of the Iceman’s mtDNA haplogroup. American Journal of Physical Anthropology, 30, 557–64.Google Scholar
Ruff, C. B., Holt, B. M., Sládek, V., et al. (2006). Body size, body proportions, and mobility in the Tyrolean ‘Iceman’. Journal of Human Evolution, 51(1), 91101.Google Scholar
Ruffer, M. A. (1911). On arterial lesions found in Egyptian mummies (1580 BC–535 AD). Journal of Pathology and Bacteriology, 16, 453–62.Google Scholar
Salo, W. L., Aufderheide, A. C., Buikstra, J. and Holcomb, T. A. (1994). Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proceedings of the National Academy of Sciences USA, 91(6), 2091–4.Google Scholar
Samadelli, M., Melis, M., Miccoli, M., Egarter-Vigl, E. and Zink, A. R. (2015). Complete mapping of the tattoos of the 5300-year-old Tyrolean Iceman. Journal of Cultural Heritage, 16(5), 753–8.Google Scholar
Samani, N. J., Erdmann, J., Hall, A. S., et al. (2007). Genome wide association analysis of coronary artery disease. New England Journal of Medicine, 357, 443–53.Google Scholar
Sankararaman, S., Mallick, S., Dannemann, M., et al. (2014). The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507, 354–7.Google Scholar
Schuenemann, V. J., Singh, P., Mendum, T. A., et al. (2013). Genome-wide comparison of medieval and modern Mycobacterium leprae. Science, 341, 179–83.Google Scholar
Schuenemann, V. J., Peltzer, A., Welte, B., et al. (2017). Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nature Communications, 8, 15694.CrossRefGoogle ScholarPubMed
Seiler, R., Spielman, A. I., Zink, A. and Rühli, F. J. (2013). Oral pathologies of the Neolithic Iceman, c.3,300 BC. European Journal of Oral Science, 21(3 Pt 1), 137–41.Google Scholar
Shen, G. Q., Li, L., Rao, S., et al. (2008). Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high crossrace risk for development of coronary artery disease. Arteriosclerosis Thrombosis and Vascular Biology, 28, 360–5.CrossRefGoogle Scholar
Shin, D. H., Oh, C. S., Hong, J. H., et al. (2017). Paleogenetic study on the seventeenth century Korean mummy with atherosclerotic cardiovascular disease. PLoS One, 12(8), e0183098.Google Scholar
Skoglund, P. Malmstrom, H., Raghavan, M., et al. (2012). Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science, 336, 466–9.Google Scholar
Smith, J. G., Melander, O., Lövkvist, H., et al. (2009). Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: A large-scale genetic association study. Circulation: Cardiovascular Genetics, 2, 159–64.Google Scholar
Spindler, K. (2000). Der Mann im Eis. Neue Sensationelle Erkenntnisse über die Mumie in den Ötztaler Alpen. Munich: Goldmann.Google Scholar
Spindler, K. and Osers, E. (1995). The Man in the Ice. The Preserved Body of a Neolithic Man Reveals the Secrets of the Stone Age. London: Phoenix.Google Scholar
Stary, H. C., Chandler, A. B., Dinsmore, R. E., et al. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 92, 1355–74.CrossRefGoogle Scholar
Sudlow, C., Gallacher, J., Allen, N., et al. (2015). UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine, 12(3), e1001779.Google Scholar
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381(9873), 1211–22.Google Scholar
Thompson, R. C., Allam, A. H., Zink, A., et al. (2014). Computed tomographic evidence of atherosclerosis in the mummified remains of humans from around the world. Global Heart, 9(2), 187–96.Google Scholar
Wagner, D. M., Klunk, J., Harbeck, M., et al. (2014). Yersinia pestis and the Plague of Justinian 541–543 AD: A genomic analysis. Lancet Infectious Diseases, 14, 319–26.Google Scholar
Wann, L. S., Narula, J., Blankstein, R., et al. (2019). Atherosclerosis in sixteenth-century Greenlandic Inuit mummies. Journal of the American Medical Association Network Open, 2(12), e1918270.Google Scholar
Wurst, C., Paladin, A., Wann, L. S., et. al. (2020). Minimally invasive bone biopsies of fully wrapped mummies guided by computed tomography and fibre-optic endoscopy: Methods and suggested guidelines. Journal of Archaeological Science: Reports, 31, 102363.Google Scholar
Yujing, L., Wujisguleng, W. and Long, C. (2012). Food uses of ferns in China: A review. Acta Societatis Botanicorum Poloniae, 81, 263–70.Google Scholar
Zink, A. and Nerlich, A. G. (2003). Molecular analyses of the ‘Pharaos:’ Feasibility of molecular studies in ancient Egyptian material. American Journal of Physical Anthropology, 121(2), 109–11.Google Scholar
Zink, A. R., Sola, C., Reischl, U., et al. (2003). Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. Journal of Clinical Microbiology, 41, 359–67.Google Scholar
Zink, A., Grabner, W. and Nerlich, A. G. (2005). Molecular identification of human tuberculosis in recent and historic bone tissue samples: A study on the role of molecular techniques for the study of historic tuberculosis. American Journal of Physical Anthropology, 126, 3247.Google Scholar
Zink, A., Wann, L. S., Thompson, R. C., et al. (2014). Genomic correlates of atherosclerosis in ancient humans. Global Heart, 9(2), 203–9.CrossRefGoogle ScholarPubMed
Zink, A., Samadelli, M., Gostner, P. and Piombino-Mascali, D. (2019). Possible evidence for care and treatment in the Tyrolean Iceman. International Journal of Paleopathology, 25, 110–17.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×