Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:17:43.029Z Has data issue: false hasContentIssue false

8 - Memory in Hummingbirds

from Part II - Memory and Recall

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Hummingbirds are faced with a challenging memory task every day. In order to keep a positive energy balance, these birds need to remember which flowers they have visited and which ones they have not. The properties of flowers provide hummingbirds with different types of information about colour, shape, space, and time to guide how they forage. Here we discuss how researchers have adapted established laboratory paradigms for use in the field to understand how hummingbirds use this information. We discuss why hummingbirds have turned out to be a suitable model to study cognition in the wild, the main findings that have established how to study memory in wild animals of a project expanding to three decades.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altshuler, D. L. & Dudley, . (2003). Kinematics of hovering hummingbird flight along simulated and natural elevational gradients. Journal of Experimental Biology, 206(18), 31393147. https://doi.org/10.1242/jeb.00540Google Scholar
Bené, F. (1941). Experiments on the color preferences of the black-chinned hummingbirds. Condor, (43), 237242.Google Scholar
Biegler, R., McGregor, A., Krebs, J. R., & Healy, S. D. (2001). A larger hippocampus is associated with longer-lasting spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 69416944. https://doi.org/10.1073/pnas.121034798Google Scholar
Brodbeck, D. & Shettleworth, S. (1995). Matching location and color of a compound stimulus: Comparison of a food-storing and nonstoring bird species. Journal of Experimental Psychology: Animal Behavior Processes, 21(1), 6477.Google Scholar
Dukas, R. & Waser, N. M. (1994). Categorization of food types enhances foraging performance of bumblebees. Animal Behaviour, 48, 10011006.CrossRefGoogle Scholar
Flores-Abreu, I. N., Hurly, T. A., & Healy, S. D. (2012). One-trial spatial learning: Wild hummingbirds relocate a reward after a single visit. Animal Cognition, 15(4), 631637. https://doi.org/10.1007/s10071-012-0491-0CrossRefGoogle ScholarPubMed
Flores-Abreu, I. N., Hurly, T. A., & Healy, S. D. (2013). Three-dimensional spatial learning in hummingbirds. Animal Behaviour, 85, 579584.CrossRefGoogle Scholar
Gass, C. L. & Garrison, J. S. E. (1999). Energy regulation by traplining hummingbirds. Functional Ecology, 13(4), 483492. https://doi.org/10.1046/j.1365-2435.1999.00335.xGoogle Scholar
Gill, F. B. (1988). Trapline foraging by hermit hummingbirds: Competition for an undefended, renewable resource. Ecology, 69(6), 19331942.Google Scholar
Grant, K. (1966). A hypothesis concerning the prevalence of red coloration in California hummingbird flowers. American Naturalist, 100, 8597.Google Scholar
Healy, S. D. & Hurly, T. A. (1998). Rufous hummingbirds’ (Selasphorus rufus) memory for flowers: Patterns or actual spatial locations? Journal of Experimental Psychology: Animal Behavior Processes, 24(4), 396404.Google Scholar
Henderson, J., Hurly, T. A., & Healy, S. D. (2001). Rufous hummingbirds’ memory for flower location. Animal Behaviour, 61, 981986. https://doi.org/10.1006/anbe.2000.1670Google Scholar
Henderson, J., Hurly, T. A., Bateson, M., & Healy, S. D. (2006). Timing in free-living rufous hummingbirds, Selasphorus rufus. Current Biology, 16(5), 512515. https://doi.org/10.1016/j.cub.2006.01.054Google Scholar
Hornsby, M. A. W., Hurly, T. A., Hamilton, C. E., Pritchard, D. J., & Healy, S. D. (2014). Wild, free-living rufous hummingbirds do not use geometric cues in a spatial task. Behavioural Processes, 108, 138141. https://doi.org/10.1016/j.beproc.2014.10.003CrossRefGoogle ScholarPubMed
Hurly, T. A. & Healy, S. D. (1996). Memory for flowers in rufous hummingbirds: location or local visual cues? Animal Behaviour, 51(5), 11491157. https://doi.org/10.1006/anbe.1996.0116Google Scholar
Hurly, T. A. & Healy, S. D. (2002). Cue learning by rufous hummingbirds (Selasphorus rufus). Journal of Experimental Psychology: Animal Behavior Processes, 28, 209223. https://doi.org/10.1037//0097-7403.28.2.209Google Scholar
Hurly, T. A., Franz, S., & Healy, S. D. (2010). Do rufous hummingbirds (Selasphorus rufus) use visual beacons? Animal Cognition, 13(2), 377383. https://doi.org/10.1007/s10071-009-0280-6Google Scholar
Irwin, R. E. (2000). Hummingbird avoidance of nectar-robbed plants: Spatial location or visual cues. Oikos, 91(3), 499506. https://doi.org/10.1034/j.1600-0706.2000.910311.xGoogle Scholar
Janzen, D. H. (1971). Euglossine bees as long-distance pollinators of tropical plants. Science, 171(3967), 203205.Google Scholar
Jelbert, S. A., Hurly, T. A., Marshall, R. E. S., & Healy, S. D. (2014). Wild, free-living hummingbirds can learn what happened, where and in which context. Animal Behaviour, 89, 185189. https://doi.org/10.1016/j.anbehav.2013.12.028Google Scholar
Kodric-Brown, A. & Brown, J. H. (1978). Influence of economics, interspecific competition, and sexual dimorphism on territoriality of migrant rufous hummingbirds. Ecology, 59(2), 285296. https://doi.org/10.2307/193374CrossRefGoogle Scholar
Lihoreau, M., Raine, N. E., Reynolds, A. M., Stelzer, R. J., Lim, K. S., Smith, A. D., … Chittka, L. (2013). Unravelling the mechanisms of trapline foraging in bees. Communicative & Integrative Biology, 6(February), 14.Google Scholar
Lyerly, S. B., Riess, B. F., & Ross, S. (1950). Color preference in the Mexican violet-eared hummingbird, Calibri T. Thalassinus (Swainson). Behaviour, 2(4), 237248. https://doi.org/10.1163/156853950X00099Google Scholar
Marshall, R. E. S., Hurly, T. A., Sturgeon, J., Shuker, D. M., & Healy, S. D. (2013). What, where and when: Deconstructing memory. Proceedings of the Royal Society B, 280, 20132194.Google Scholar
McGregor, A. & Healy, S. (1999). Spatial accuracy in food-storing and nonstoring birds. Animal Behaviour, 58(4), 727734. https://doi.org/10.1006/anbe.1999.1190Google Scholar
Ohashi, K., Leslie, A., & Thomson, J. D. (2008). Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behavioral Ecology, 19(19), 936948. https://doi.org/10.1093/beheco/arn048Google Scholar
Pravosudov, V. V & Clayton, N. S. (2002). A test of the adaptive specialization hypothesis: Population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behavioral Neuroscience, 116(4), 515522. https://doi.org/10.1037//0735-7044.116.4.515Google Scholar
Pritchard, D. J., Hurly, T. A., & Healy, S. D. (2015). Effects of landmark distance and stability on accuracy of reward relocation. Animal Cognition, 18(6), 12851297. https://doi.org/10.1007/s10071-015-0896-7Google Scholar
Pritchard, D. J., Scott, R. D., Healy, S. D., & Hurly, A. T. (2016). Wild rufous hummingbirds use local landmarks to return to rewarded locations. Behavioural Processes, 122, 5966. https://doi.org/10.1016/j.beproc.2015.11.004Google Scholar
Pritchard, D. J., Tello-Ramos, M. C. T., Muth, F., & Healy, S. D. (2017). Treating hummingbirds as feathered bees: A case of ethological cross-pollination. Biology Letters, 13, 20170610. https://doi.org/10.1098/rsbl.2017.0610CrossRefGoogle Scholar
Pritchard, D. J. & Healy, S. D. (2018). Taking an insect-inspired approach to bird navigation. Learning and Behavior, 46(1), 722. https://doi.org/10.3758/s13420-018-0314-5CrossRefGoogle ScholarPubMed
Pritchard, D. J., Hurly, T. A., & Healy, S. D. (2018). Wild hummingbirds require a consistent view of landmarks to pinpoint a goal location. Animal Behaviour, 137, 8394. https://doi.org/10.1016/j.anbehav.2018.01.014Google Scholar
Samuels, M., Hurly, T. A., & Healy, S. D. (2014). Colour cues facilitate learning flower refill schedules in wild hummingbirds. Behavioural Processes, 109, 157163. https://doi.org/10.1016/j.beproc.2014.09.007CrossRefGoogle ScholarPubMed
Sherman, A. R. (1913). Experiments in feeding hummingbirds during seven summers. Wilson Bulletin, XXV, 153166.Google Scholar
Sherry, D. F., Jacobs, L., & Gaulin, S. (1992). Spatial memory and adaptative specialization of the hippocampus. Trends in Neuroscience, 15, 298303.CrossRefGoogle ScholarPubMed
Tello-Ramos, M. C., Hurly, T. A., & Healy, S. D. (2014). Female hummingbirds do not relocate rewards using colour cues. Animal Behaviour, 93, 129133. https://doi.org/10.1016/j.anbehav.2014.04.036CrossRefGoogle Scholar
Tello-Ramos, M. C., Hurly, T. A., & Healy, S. D. (2015a). Traplining in hummingbirds: Flying short distance sequences among several locations. Behavioral Ecology, 26, 812819. https://doi.org/10.1093/beheco/arv014Google Scholar
Tello-Ramos, M. C., Hurly, T. A., Higgott, C., & Healy, S. D. (2015b). Time-place learning in wild, free-living hummingbirds. Animal Behaviour, 104, 123129. https://doi.org/10.1016/j.anbehav.2015.03.015Google Scholar
Temeles, E. J., Shaw, K. C., Kudla, A. U., & Sander, S. E. (2006). Traplining by purple-throated carib hummingbirds: Behavioral responses to competition and nectar availability. Behavioral Ecology and Sociobiology, 61(2), 163172. https://doi.org/10.1007/s00265-006-0247-4Google Scholar
Ward, B. J., Day, L. B., Wilkening, S. R., Wylie, D. R., Saucier, D. M., & Iwaniuk, A. N. (2012). Hummingbirds have a greatly enlarged hippocampal formation. Biology Letters, 8(4), 657659. https://doi.org/10.1098/rsbl.2011.1180Google Scholar
Wolf, L. L., Stiles, F. G., & Hainsworth, F. R. (1976). Ecological organization of tropical, highland hummingbird community. Journal of Animal Ecology, 45(2), 349379.Google Scholar
Zenzal, T. J., Moore, F. R., Diehl, R. H., Ward, M. P., & Deppe, J. L. (2018). Migratory hummingbirds make their own rules: The decision to resume migration along a barrier. Animal Behaviour, 137, 215224. https://doi.org/10.1016/j.anbehav.2018.01.019Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×