Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T11:45:38.193Z Has data issue: false hasContentIssue false

20 - Developing Cognitive Control and Flexible Adaptation during Childhood

from Subpart II.2 - Childhood and Adolescence: The Development of Human Thinking

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Whereas performance on intelligence tests and their associated IQ indices are typically considered by parents and teachers as a visa for school success, research over the last couple of decades has revealed an even better predictor of life success than intelligence: cognitive control, that is, the goal-directed regulation of attention, thoughts and actions (Blair & Razza, 2007). Even young children, who tend to be ‘all over the place’, prone to tantrums and often engage in socially inappropriate behaviours, are not devoid of cognitive control skills. Emerging cognitive control during childhood supports increasingly complex thinking and reasoning, ensures steady gains in autonomy with age and allows children to respond increasingly adaptively to novel situations where no routine exists or multiple responses compete with one another. As such, cognitive control plays a key role in explicit learning, as it is initially required to guide actions (e.g., to decide on which keys to press while learning the piano), although it is progressively released as the newly learned skill becomes automated (Chein & Schneider, 2012). Furthermore, in the classroom, children need to engage cognitive control to raise their hands before talking, take turns, concentrate, follow instructions and stay on task. Indeed, cognitive control early in life predicts not only attention in the classroom and academic achievement but also other important outcomes such as health, income and relationship quality in adulthood (Daly et al., 2015; Moffitt et al., 2011). Children growing up in poverty generally show less efficient cognitive control than children from higher socioeconomic backgrounds (Noble et al., 2007) and poor cognitive control is often observed in children with developmental disorders (such as autism and ADHD; Christ et al., 2010; Geurts et al., 2004). In turn, poor cognitive control is a major risk factor for learning difficulties, academic failure, and cascading negative outcomes, including unsafe sex, drug abuse, and criminality in adolescence and adulthood (Moffitt et al., 2011).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-based model. Cognitive Science, 26, 3983.Google Scholar
Ambrosi, S., Lemaire, P., & Blaye, A. (2016). Do young children modulate their cognitive control?: Sequential congruency effects across three conflict tasks in 5-to-6 year-olds. Experimental Psychology, 63, 117126.CrossRefGoogle Scholar
Ambrosi, S., Servant, M., Blaye, A., & Burle, B. (2019). Conflict processing in kindergarten children: New evidence from distribution analyses reveals the dynamics of incorrect response activation and suppression. Journal of Experimental Child Psychology, 177, 3652.CrossRefGoogle Scholar
Ambrosi, S., Śmigasiewicz, K., Burle, B., & Blaye, A. (2020). The dynamics of interference control across childhood and adolescence: Distribution analyses in three conflict tasks and ten age groups. Developmental Psychology, 56, 22622280.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Mackiewicz Seghete, K. L., Claus, E. D., Burgess, G. C., Ruzic, L., & Banich, M. T. (2011). Cognitive control in adolescence: Neural underpinnings and relation to self-report behaviors. PLoS ONE, 6, e21598.CrossRefGoogle ScholarPubMed
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115116.CrossRefGoogle ScholarPubMed
Atas, A., Desender, K., Gevers, W., & Cleeremans, A. (2016). Dissociating perception from action during conscious and unconscious conflict adaptation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 866881.Google ScholarPubMed
Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2013). Developmental changes in within- and between-network connectivity between late childhood and adulthood. Neuropsychologia, 51, 156167.CrossRefGoogle ScholarPubMed
Barnes, J. J., Nobre, A. C., Woolrich, M. W., Baker, K., & Astle, D. E. (2016). Training working memory in childhood enhances coupling between frontoparietal control network and task-related regions. Journal of Neuroscience, 36, 90019011.CrossRefGoogle ScholarPubMed
Blackwell, K. A., & Munakata, Y. (2014). Costs and benefits linked to developments in cognitive control. Developmental Science, 17, 203211.CrossRefGoogle ScholarPubMed
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647663.CrossRefGoogle ScholarPubMed
Blaye, A., Ambrosi, S., Lucenet, J., & Burle, B. (2018). The development of within and between-trials dynamics of inhibitory processes across childhood and adolescence. Paper presented to the 48th Annual meeting of the Jean Piaget Society, 31 May–2 June, Amsterdam, the Netherlands.Google Scholar
Blaye, A., & Chevalier, N. (2011). The role of goal representation in preschoolers’ flexibility and inhibition. Journal of Experimental Child Psychology, 108, 469483.CrossRefGoogle ScholarPubMed
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.CrossRefGoogle ScholarPubMed
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106113.CrossRefGoogle ScholarPubMed
Braver, T. S., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In Conway, A., Jarrold, C., Kane, M., Miyake, A., & Towse, J. (eds.), Variation in Working Memory (pp. 76106). Oxford: Oxford University Press.Google Scholar
Brinums, M., Imuta, K., & Suddendorf, T. (2018). Practicing for the future: Deliberate practice in early childhood. Child Development, 86, 20512058.CrossRefGoogle Scholar
Buss, A. T., & Spencer, J. P. (2018). Changes in frontal and posterior cortical activity underlie the early emergence of executive function. Developmental Science, 21, e12602.CrossRefGoogle ScholarPubMed
Camos, V., & Barrouillet, P. (2011). Developmental change in working memory strategies: From passive maintenance to active refreshing. Developmental Psychology, 47, 898904.CrossRefGoogle ScholarPubMed
Carp, J., & Compton, R. J. (2009). Alpha power is influenced by performance errors. Psychophysiology, 46, 336343.CrossRefGoogle ScholarPubMed
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18, 414421.CrossRefGoogle ScholarPubMed
Chatham, C. H., Frank, M. J., & Munakata, Y. (2009). Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proceedings of the National Academy of Sciences (USA), 106, 55295533.CrossRefGoogle ScholarPubMed
Chein, J. M., & Schneider, W. (2012). The brain’s learning and control architecture. Current Directions in Psychological Science, 21, 7884.CrossRefGoogle Scholar
Chevalier, N. (2015). The development of executive function: Toward more optimal coordination of control with age. Child Development Perspectives, 9, 239244.CrossRefGoogle Scholar
Chevalier, N. (2018). Willing to think hard? The subjective value of cognitive effort in children. Child Development, 89, 12831295.CrossRefGoogle ScholarPubMed
Chevalier, N., & Blaye, A. (2009). Setting goals to switch between tasks: Effect of cue transparency on children’s cognitive flexibility. Developmental Psychology, 45, 782797.CrossRefGoogle ScholarPubMed
Chevalier, N., & Blaye, A. (2016). Metacognitive monitoring of executive control engagement during childhood. Child Development, 87, 12641276.CrossRefGoogle ScholarPubMed
Chevalier, N., Dauvier, B., & Blaye, A. (2009). Preschoolers’ use of feedback for flexible behavior: Insights from a computational model. Journal of Experimental Child Psychology, 103, 251267.CrossRefGoogle ScholarPubMed
Chevalier, N., Huber, K. L., Wiebe, S. A., & Espy, K. A. (2013). Qualitative change in executive control during childhood and adulthood. Cognition, 128, 112.CrossRefGoogle ScholarPubMed
Chevalier, N., Jackson, J., Revueltas Roux, A., Moriguchi, Y., & Auyeung, B. (2019). Differentiation in prefrontal cortex recruitment during childhood: Evidence from cognitive control demands and social contexts. Developmental Cognitive Neuroscience, 36, 100629.CrossRefGoogle ScholarPubMed
Chevalier, N., James, T. D., Wiebe, S. A., Nelson, J. M., & Espy, K. A. (2014). Contribution of reactive and proactive control to children’s working memory performance: Insight from item recall durations in response sequence planning. Developmental Psychology, 50, 19992008.CrossRefGoogle ScholarPubMed
Chevalier, N., Martis, S. B., Curran, T., & Munakata, Y. (2015). Metacognitive processes in executive control development: The case of reactive and proactive control. Journal of Cognitive Neuroscience, 27, 11251136.CrossRefGoogle ScholarPubMed
Chevalier, N., Wiebe, S. A., Huber, K. L., & Espy, K. A. (2011). Switch detection in preschoolers’ cognitive flexibility. Journal of Experimental Child Psychology, 109, 353370.CrossRefGoogle ScholarPubMed
Christ, S. E., Kanne, S. M., & Reiersen, A. M. (2010). Executive function in individuals with subthreshold autism traits. Neuropsychology, 24, 590598.CrossRefGoogle ScholarPubMed
Claro, S., Paunesku, D., & Dweck, C. S. (2016). Growth mindset tempers the effects of poverty on academic achievement. Proceedings of the National Academy of Sciences (USA), 113, 86648668.CrossRefGoogle ScholarPubMed
Cragg, L. (2016). The development of stimulus and response interference control in mid-childhood. Developmental Psychology, 52, 242252.CrossRefGoogle Scholar
Cragg, L., & Nation, K. (2010). Language and the development of cognitive control. Topics in Cognitive Science, 2, 631642.CrossRefGoogle ScholarPubMed
Crone, E. A. (2009). Executive functions in adolescence: Inferences from brain and behavior. Developmental Science, 12, 825830.CrossRefGoogle ScholarPubMed
Crone, E. A., Donohue, S. E., Honomichl, R., Wendelken, C., & Bunge, S. A. (2006). Brain regions mediating flexible rule use during development. The Journal of Neuroscience, 26, 1123911247.CrossRefGoogle ScholarPubMed
Crump, M. J. C., Vaquero, J. M. M., & Milliken, B. (2008). Context-specific learning and control: The roles of awareness, task relevance, and relative salience. Consciousness and Cognition, 17, 2236.CrossRefGoogle ScholarPubMed
Daly, M., Delaney, L., Egan, M., & Baumeister, R. F. (2015). Childhood self-control and unemployment throughout the life span: Evidence from two British cohort studies. Psychological Science, 26, 709723.CrossRefGoogle ScholarPubMed
Dauvier, B., Chevalier, N., & Blaye, A. (2012). Using finite mixture of GLMs to explore variability in children’s flexibility in a task-switching paradigm. Cognitive Development, 27, 440454.CrossRefGoogle Scholar
Davis, E. P., Bruce, J., Snyder, K., & Nelson, C. A. (2003). The X-trials: Neural correlates of an inhibitory control task in children and adults. Journal of Cognitive Neuroscience, 15, 432443.CrossRefGoogle ScholarPubMed
Destan, N., Hembacher, E., Ghetti, S., & Roebers, C. M. (2014). Early metacognitive abilities: The interplay of monitoring and control processes in 5- to 7-year-old children. Journal of Experimental Child Psychology, 126, 213228.CrossRefGoogle Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Doebel, S., Barker, J. E., Chevalier, N., Michaelson, L. E., Fisher, V., & Munakata, Y. (2017). Getting ready to use control: Advances in the measurement of young children’s use of proactive control. PLoS ONE, 12, e0175072.CrossRefGoogle ScholarPubMed
Doebel, S., & Zelazo, P. D. (2015). A meta-analysis of the dimensional change card sort: Implications for developmental theories and the measurement of executive function in children. Developmental Review, 38, 241268.CrossRefGoogle ScholarPubMed
DuPuis, D., Ram, N., Willner, C. J., Karalunas, S., Segalowitz, S. J., & Gatzke-Kopp, L. M. (2015). Implications of ongoing neural development for the measurement of the error-related negativity in childhood. Developmental Science, 18, 452468.CrossRefGoogle ScholarPubMed
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18.CrossRefGoogle ScholarPubMed
Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5, F9F16.CrossRefGoogle Scholar
Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014). The heterogeneous world of congruency sequence effects: An update. Frontiers in Psychology, 5, 19.CrossRefGoogle ScholarPubMed
Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380390.CrossRefGoogle ScholarPubMed
Elke, S., & Wiebe, S. A. (2017). Proactive control in early and middle childhood: An ERP study. Developmental Cognitive Neuroscience, 26, 2838.CrossRefGoogle ScholarPubMed
Erb, C. D., & Marcovitch, S. (2019). Tracking the within-trial, cross-trial, and developmental dynamics of cognitive control: Evidence from the Simon task. Child Development, 90, e831e848.CrossRefGoogle ScholarPubMed
Erb, C. D., Moher, J., Sobel, D. M., & Song, J. H. (2016). Reach tracking reveals dissociable processes underlying cognitive control. Cognition, 152, 114126.CrossRefGoogle ScholarPubMed
Ezekiel, F., Bosma, R., & Morton, J. B. (2013). Dimensional change card sort performance associated with age-related differences in functional connectivity of lateral prefrontal cortex. Developmental Cognitive Neuroscience, 5, 4050.CrossRefGoogle ScholarPubMed
Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., … Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences (USA), 104, 1350713512.CrossRefGoogle ScholarPubMed
Fair, D. A., Nigg, J. T., Iyer, S., Bathula, D., Mills, K. L., Dosenbach, N. U. F., … Milham, M. P. (2013). Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Frontiers in Systems Neuroscience, 6, 131.CrossRefGoogle ScholarPubMed
Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447455.CrossRefGoogle ScholarPubMed
Fatzer, S. T., & Roebers, C. M. (2012). Language and executive functions: The effect of articulatory suppression on executive functioning in children. Journal of Cognition and Development, 13, 454472.CrossRefGoogle Scholar
Ferdinand, N. K., & Kray, J. (2014). Developmental changes in performance monitoring: How electrophysiological data can enhance our understanding of error and feedback processing in childhood and adolescence. Behavioural Brain Research, 263, 122132.CrossRefGoogle ScholarPubMed
Finn, A. S., Minas, J. E., Leonard, J. A., Mackey, A. P., Salvatore, J., Goetz, C., … Gabrieli, J. D. E. (2017). Functional brain organization of working memory in adolescents varies in relation to family income and academic achievement. Developmental Science, 20, e12450.CrossRefGoogle ScholarPubMed
Fjell, A. M., Walhovd, K. B., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., … Dale, A. M. (2012). Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences (USA), 109, 1962019625.CrossRefGoogle ScholarPubMed
Gehring, W. J., Goss, B., Coles, M. G. H., David, E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385390.CrossRefGoogle Scholar
Gehring, W. J., & Knight, R. T. (2000). Prefrontal–cingulate interactions in action monitoring. Nature Neuroscience, 3, 516520.CrossRefGoogle ScholarPubMed
Geurts, H. M., Verté, S., Oosterlaan, J., Roeyers, H., & Sergeant, J. A. (2004). How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 45, 836854.CrossRefGoogle ScholarPubMed
Gold, J. M., Kool, W., Botvinick, M. M., Hubzin, L., August, S., & Waltz, J. A. (2015). Cognitive effort avoidance and detection in people with schizophrenia. Cognitive, Affective & Behavioral Neuroscience, 15, 145154.CrossRefGoogle ScholarPubMed
Gonthier, C., Ambrosi, S., & Blaye, A. (2021). Learning-based before intentional cognitive control: Developmental evidence for a dissociation between implicit and explicit control. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publicationGoogle Scholar
Gonthier, C., Zira, M., Colé, P., & Blaye, A. (2019). Evidencing the developmental shift from reactive to proactive control in early childhood and its relationship to working memory. Journal of Experimental Child Psychology, 177, 116.CrossRefGoogle ScholarPubMed
Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480506.CrossRefGoogle ScholarPubMed
Grayson, D. S., & Fair, D. A. (2017). Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature. NeuroImage, 160, 1531.CrossRefGoogle Scholar
Gupta, R., Kar, B. R., & Srinivasan, N. (2009). Development of task switching and post-error-slowing in children. Behavioral and Brain Functions: BBF, 5, 38.CrossRefGoogle ScholarPubMed
Hadley, L. V., Acluche, F., & Chevalier, N. (2020). Encouraging performance monitoring promotes proactive control in children. Developmental Science, 23, e12861.CrossRefGoogle ScholarPubMed
Haimovitz, K., & Dweck, C. S. (2017). The origins of children’s growth and fixed mindsets: New research and a new proposal. Child Development, 88, 18491859.CrossRefGoogle Scholar
Helfrich, R. F., & Knight, R. T. (2016). Oscillatory dynamics of prefrontal cognitive control. Trends in Cognitive Sciences, 20, 916930.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679709.CrossRefGoogle ScholarPubMed
Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 117.CrossRefGoogle ScholarPubMed
Hwang, K., Velanova, K., & Luna, B. (2010). Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study. Journal of Neuroscience, 30, 1553515545.CrossRefGoogle ScholarPubMed
Iani, C., Stella, G., & Rubichi, S. (2014). Response inhibition and adaptations to response conflict in 6- to 8-year-old children: Evidence from the Simon effect. Attention, Perception & Psychophysics, 76, 12341241.CrossRefGoogle ScholarPubMed
Jiang, J., Correa, C. M., Geerts, J., & van Gaal, S. (2018). The relationship between conflict awareness and behavioral and oscillatory signatures of immediate and delayed cognitive control. NeuroImage, 177, 1119.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 721.CrossRefGoogle ScholarPubMed
Jones, L. B., Rothbart, M. K., & Posner, M. I. (2003). Development of executive attention in preschool children. Developmental Science, 6, 498504.CrossRefGoogle Scholar
Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144(11), 11471185.CrossRefGoogle ScholarPubMed
Kelly, A. M. C., Di Martino, A., Uddin, L. Q., Shehzad, Z., Gee, D. G., Reiss, P. T., … Milham, M. P. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19, 640657.CrossRefGoogle ScholarPubMed
Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology. General, 139, 665682.CrossRefGoogle ScholarPubMed
Kray, J., Karbach, J., & Blaye, A. (2012). The influence of stimulus-set size on developmental changes in cognitive control and conflict adaptation. Acta Psychologica, 140, 119128.CrossRefGoogle ScholarPubMed
Larson, M. J., Clawson, A., Clayson, P. E., & South, M. (2012). Cognitive control and conflict adaptation similarities in children and adults. Developmental Neuropsychology, 37, 343357.CrossRefGoogle ScholarPubMed
Lee, K., Bull, R., & Ho, R. M. H. (2013). Developmental changes in executive functioning. Child Development, 84, 19331953.CrossRefGoogle ScholarPubMed
Linzarini, A., Houdé, O., & Borst, G. (2017). Cognitive control outside of conscious awareness. Consciousness and Cognition, 53, 185193.CrossRefGoogle ScholarPubMed
Lo, S. L. (2018). A meta-analytic review of the event-related potentials (ERN and N2) in childhood and adolescence: Providing a developmental perspective on the conflict monitoring theory. Developmental Review, 48, 82112.CrossRefGoogle Scholar
Lucenet, J., & Blaye, A. (2014). Age-related changes in the temporal dynamics of executive control: A study in 5- and 6-year-old children. Frontiers in Psychology, 5, 111.CrossRefGoogle Scholar
Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., & Chahal, R. (2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151170.CrossRefGoogle ScholarPubMed
Luna, B., Padmanabhan, A., & O’Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72, 101113.CrossRefGoogle ScholarPubMed
Mai, X., Tardif, T., Doan, S. N., Liu, C., Gehring, W. J., & Luo, Y.-J. (2011). Brain activity elicited by positive and negative feedback in preschool-aged children. PLoS ONE, 6, e18774.CrossRefGoogle ScholarPubMed
Marcovitch, S., & Zelazo, P. D. (1999). The A-not-B error: Results from a logistic meta-analysis. Child Development, 70, 12971313.CrossRefGoogle Scholar
Marek, S., Hwang, K., Foran, W., Hallquist, M. N., & Luna, B. (2015). The contribution of network organization and integration to the development of cognitive control. PLoS Biology, 13, 125.CrossRefGoogle Scholar
Marklund, P., & Persson, J. (2012). Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus. NeuroImage, 63, 15521560.CrossRefGoogle ScholarPubMed
Marsh, R., Zhu, H., Schultz, R. T., Quackenbush, G., Royal, J., Skudlarski, P., & Peterson, B. S. (2006). A developmental fMRI study of self-regulatory control. Human Brain Mapping, 27, 848863.CrossRefGoogle ScholarPubMed
Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450452.CrossRefGoogle ScholarPubMed
McGuire, J. T., & Botvinick, M. M. (2010). Prefrontal cortex, cognitive control, and the registration of decision costs. Proceedings of the National Academy of Sciences (USA), 107, 79227926.CrossRefGoogle ScholarPubMed
Meyer, A., Hajcak, G., Torpey, D. C., Kujawa, A., Kim, J., Bufferd, S., … Klein, D. N. (2013). Increased error-related brain activity in six-year-old children with clinical anxiety. Journal of Abnormal Child Psychology, 41, 12571266.CrossRefGoogle ScholarPubMed
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 814.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex ‘Frontal Lobe’ tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences (USA), 108, 26932698.CrossRefGoogle ScholarPubMed
Morey, C. C., Mareva, S., Lelonkiewicz, J. R., & Chevalier, N. (2018). Gaze-based rehearsal in children under 7: A developmental investigation of eye movements during a serial spatial memory task. Developmental Science, 21, e12559.CrossRefGoogle ScholarPubMed
Moriguchi, Y., & Hiraki, K. (2011). Longitudinal development of prefrontal function during early childhood. Developmental Cognitive Neuroscience, 1, 153162.CrossRefGoogle ScholarPubMed
Muhle-Karbe, P. S., Jiang, J., & Egner, T. (2018). Causal evidence for learning-dependent frontal-lobe contributions to cognitive control. The Journal of Neuroscience, 38, 962973.CrossRefGoogle ScholarPubMed
Munakata, Y., Snyder, H. R., & Chatham, C. H. (2012). Developing cognitive control: Three key transitions. Current Directions in Psychological Science, 21, 7177.CrossRefGoogle ScholarPubMed
Niebaum, J. C., Chevalier, N., Guild, R. M., & Munakata, Y. (2019). Adaptive control and the avoidance of cognitive control demands across development. Neurospychologia, 123, 152158.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S., Stins, J., Posthuma, D., Polderman, T. C., Boomsma, D., & Geus, E. (2006). Accounting for sequential trial effects in the flanker task: Conflict adaptation or associative priming? Memory & Cognition, 34, 12601272.CrossRefGoogle ScholarPubMed
Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10, 464480.CrossRefGoogle ScholarPubMed
O’Leary, A. P., & Sloutsky, V. M. (2017). Carving metacognition at its joints: Protracted development of component processes. Child Development, 88, 10151032.CrossRefGoogle ScholarPubMed
Ordaz, S. J., Foran, W., Velanova, K., & Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. Journal of Neuroscience, 33, 1810918124.CrossRefGoogle ScholarPubMed
Peters, S., Koolschijn, P. C. M. P., Crone, E. A., Van Duijvenvoorde, A. C. K., & Raijmakers, M. E. J. (2014). Strategies influence neural activity for feedback learning across child and adolescent development. Neuropsychologia, 62, 365374.CrossRefGoogle ScholarPubMed
Polizzotto, N. R., Hill-Jarrett, T., Walker, C., & Cho, Y. (2018). Normal development of context processing using the AXCPT paradigm. PLoS ONE, 13, e0197812.CrossRefGoogle ScholarPubMed
Pozuelos, J. P., Combita, L. M., Abundis, A., Paz-Alonsa, P. M., Conejero, Á., Guerra, S., & Rueda, M. R. (2019). Metacognitive scaffolding boosts cognitive and neural benefits following executive attention training in children. Developmental Science, 22, e12756.CrossRefGoogle ScholarPubMed
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., … Giedd, J. N. (2011). How does your cortex grow? The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 71747177.CrossRefGoogle ScholarPubMed
Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56, 129140.CrossRefGoogle ScholarPubMed
Roebers, C. M. (2017). Executive function and metacognition: Towards a unifying framework of cognitive self-regulation. Developmental Review, 45, 3151.CrossRefGoogle Scholar
Schachar, R. J., Chen, S., Logan, G. D., Ornstein, T. J., Crosbie, J., Ickowicz, A., & Pakulak, A. (2004). Evidence for an error monitoring deficit in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 32, 285293.CrossRefGoogle ScholarPubMed
Schmidt, J. R. (2013). Questioning conflict adaptation: Proportion congruent and Gratton effects reconsidered. Psychonomic Bulletin & Review, 20, 615630.CrossRefGoogle ScholarPubMed
Schmidt, J. R. (2019). Evidence against conflict monitoring and adaptation: An updated review. Psychonomic Bulletin & Review, 26, 753771.CrossRefGoogle ScholarPubMed
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 35863594.CrossRefGoogle ScholarPubMed
Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217240.CrossRefGoogle ScholarPubMed
Sherman, L. E., Rudie, J. D., Pfeifer, J. H., Masten, C. L., McNealy, K., & Dapretto, M. (2014). Development of the default mode and central executive networks across early adolescence: A longitudinal study. Developmental Cognitive Neuroscience, 10, 148159.CrossRefGoogle ScholarPubMed
Smulders, S. F. A., Soetens, E., & van der Molen, M. W. (2016). What happens when children encounter an error? Brain and Cognition, 104, 3447.CrossRefGoogle ScholarPubMed
Smulders, S. F. A., Soetens, E. L. L., & van der Molen, M. W. (2018). How do children deal with conflict? A developmental study of sequential conflict modulation. Frontiers in Psychology, 9, 766.CrossRefGoogle ScholarPubMed
Stins, J. F., Polderman, J. C. T., Boomsma, D. I., & de Geus, E. J. C. (2007). Conditional accuracy in response interference tasks: Evidence from the Eriksen flanker task and the spatial conflict task. Advances in Cognitive Psychology, 3, 409417.CrossRefGoogle Scholar
Strang, N. M., & Pollak, S. D. (2014). Developmental continuity in reward-related enhancement of cognitive control. Developmental Cognitive Neuroscience, 10C, 3443.CrossRefGoogle Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643.CrossRefGoogle Scholar
Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of American Academy of Child and Adolescent Psychiatry, 41, 12311238.CrossRefGoogle ScholarPubMed
Tamnes, C. K., Walhovd, K. B., Torstveit, M., Sells, V. T., & Fjell, A. M. (2013). Performance monitoring in children and adolescents: A review of developmental changes in the error-related negativity and brain maturation. Developmental Cognitive Neuroscience, 6, 113.CrossRefGoogle ScholarPubMed
Torpey, D. C., Hajcak, G., Kim, J., Kujawa, A., & Klein, D. N. (2012). Electrocortical and behavioral measures of response monitoring in young children during a Go/No-Go task. Developmental Psychobiology, 54, 139150.CrossRefGoogle ScholarPubMed
Tsujii, T., Yamamoto, E., Masuda, S., & Watanabe, S. (2009). Longitudinal study of spatial working memory development in young children. NeuroReport, 20, 759763.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 1857818589.CrossRefGoogle ScholarPubMed
van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen, M. W. (2011). Lifespan changes in global and selective stopping and performance adjustments. Frontiers in Psychology, 2, 357.CrossRefGoogle ScholarPubMed
van Gaal, S., Lamme, V. A. F., & Ridderinkhof, K. R. (2010). Unconsciously triggered conflict adaptation. PLoS ONE, 5, 6.CrossRefGoogle ScholarPubMed
Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18, 25052522.CrossRefGoogle ScholarPubMed
Verguts, T. (2017). Binding by random bursts: A computational model of cognitive control. Journal of Cognitive Neuroscience, 29, 11031118.CrossRefGoogle ScholarPubMed
Voigt, B., Mahy, C. E. V, Ellis, J., Schnitzspahn, K., Krause, I., Altgassen, M., & Kliegel, M. (2014). The development of time-based prospective memory in childhood: The role of working memory updating. Developmental Psychology, 50, 2393.CrossRefGoogle ScholarPubMed
Wiebe, S. A., Espy, K. A., & Charak, D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Developmental Psychology, 44(2), 575587.CrossRefGoogle ScholarPubMed
Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A. C., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108, 436452.CrossRefGoogle ScholarPubMed
Wiersema, J. R., van der Meere, J. J., & Roeyers, H. (2007). Developmental changes in error monitoring: An event-related potential study. Neuropsychologia, 45, 16491657.CrossRefGoogle ScholarPubMed
Wilk, H. A., & Morton, J. B. (2012). Developmental changes in patterns of brain activity associated with moment-to-moment adjustments in control. NeuroImage, 63, 475484.CrossRefGoogle ScholarPubMed
Willoughby, M. T., Blair, C. B., Wirth, R. J., & Greenberg, M. (2012). The measurement of executive function at age 5: Psychometric properties and relationship to academic achievement. Psychological Assessment, 24, 226239.CrossRefGoogle ScholarPubMed
Yordanova, J., Kolev, V., Albrecht, B., Uebel, H., & Banaschewski, T. (2011). May posterior performance be a critical factor for behavioral deficits in attention-deficit/hyperactivity disorder? Biological Psychiatry, 70, 246254.CrossRefGoogle Scholar
Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6, 354360.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×