Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:21:38.106Z Has data issue: false hasContentIssue false

11 - Peripheral Psychophysiology

from Part III - Experimental and Biological Approaches

Published online by Cambridge University Press:  23 March 2020

Aidan G. C. Wright
Affiliation:
University of Pittsburgh
Michael N. Hallquist
Affiliation:
Pennsylvania State University
Get access

Summary

Peripheral psychophysiology comprises a broad range of reliable research methods which have collectively made enormous contributions to the field of clinical psychology. This chapter provides a bird’s-eye view of peripheral psychophysiology methods and summarizes a selection of their best-replicated clinical correlates. The chapter begins by reviewing influential theoretical models used to explain the link between physiology and psychological experiences, including Polyvagal Theory and the Neurovisceral Integration Model. A discussion follows of cross-measure methodological considerations when conducting peripheral psychophysiological research. Finally, several specific measures are examined: cardiovascular (heart rate, heart rate variability, and respiratory sinus arrhythmia), electrodermal (skin conductance), startle responses, electro-oculography (eye-tracking), and pupillometry. For each measure, its history, the underlying biological mechanisms, methodological recommendations, and selected clinical findings are discussed. This chapter provides an approachable introduction to this expansive field and also updates methodological recommendations and the associated clinical literature.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaron, R. V., & Benning, S. D. (2016). Postauricular Reflexes Elicited by Soft Acoustic Clicks and Loud Noise Probes: Reliability, Prepulse Facilitation, and Sensitivity to Picture Contents. Psychophysiology, 53(12), 19001908.Google Scholar
Armstrong, T., & Olatunji, B. O. (2012). Eye Tracking of Attention in the Affective Disorders: A Meta-Analytic Review and Synthesis. Clinical Psychology Review, 32(8), 704723.Google Scholar
Bai, X., Li, J., Zhou, L., & Li, X. (2009). Influence of the Menstrual Cycle on Nonlinear Properties of Heart Rate Variability in Young Women. American Journal of Physiology ‒ Heart and Circulatory Physiology, 297(2), H765H774.CrossRefGoogle ScholarPubMed
Bast, N., Poustka, L., & Freitag, C. M. (2018). The Locus Coeruleus–Norepinephrine System as Pacemaker of Attention – A Developmental Mechanism of Derailed Attentional Function in Autism Spectrum Disorder. European Journal of Neuroscience, 47(2), 115125.CrossRefGoogle ScholarPubMed
Beauchaine, T. (2001). Vagal Tone, Development, and Gray’s Motivational Theory: Toward an Integrated Model of Autonomic Nervous System Functioning in Psychopathology. Development and Psychopathology, 13(2), 183214.Google Scholar
Beauchaine, T. P. (2015). Respiratory Sinus Arrhythmia: A Transdiagnostic Biomarker of Emotion Dysregulation and Psychopathology. Current Opinion in Psychology, 3, 4347.Google Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the Multiple Levels of Analysis Perspective in a Program of Study on Externalizing Behavior. Development and Psychopathology, 24(3), 10031018.Google Scholar
Beauchaine, T. P., Katkin, E. S., Strassberg, Z., & Snarr, J. (2001). Disinhibitory Psychopathology in Male Adolescents: Discriminating Conduct Disorder from Attention-Deficit/Hyperactivity Disorder through Concurrent Assessment of Multiple Autonomic States. Journal of Abnormal Psychology, 110(4), 610624.Google Scholar
Beauchaine, T. P., & Thayer, J. F. (2015). Heart Rate Variability as a Transdiagnostic Biomarker of Psychopathology. International Journal of Psychophysiology, 98(2), 338350.Google Scholar
Benarroch, E. E. (1993). The Central Autonomic Network: Functional Organization, Dysfunction, and Perspective. In Mayo Clinic Proceedings (Vol. 68, No. 10, pp. 9881001). Rochester, MN: Elsevier.Google Scholar
Benning, S. D., & Ait Oumeziane, B. (2017). Reduced Positive Emotion and Underarousal are Uniquely Associated with Subclinical Depression Symptoms: Evidence from Psychophysiology, Self‐Report, and Symptom Clusters. Psychophysiology, 54(7), 10101030.CrossRefGoogle ScholarPubMed
Berthoud, H.-R., & Neuhuber, W. L. (2000). Functional and Chemical Anatomy of the Afferent Vagal System. Autonomic Neuroscience, 85(1), 117.Google Scholar
Bertsch, K., Hagemann, D., Naumann, E., Schächinger, H., & Schulz, A. (2012). Stability of Heart Rate Variability Indices Reflecting Parasympathetic Activity. Psychophysiology, 49(5), 672682.Google Scholar
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & Van Boxtel, A. (2005). Committee Report: Guidelines for Human Startle Eyeblink Electromyographic Studies. Psychophysiology, 42(1), 115.Google Scholar
Boucsein, W. (2012). Electrodermal Activity. New York: Springer Science & Business Media.Google Scholar
Bradford, D. E., Starr, M. J., Shackman, A. J., & Curtin, J. J. (2015). Empirically Based Comparisons of the Reliability and Validity of Common Quantification Approaches for Eyeblink Startle Potentiation in Humans. Psychophysiology, 52(12), 16691681.CrossRefGoogle ScholarPubMed
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The Pupil as a Measure of Emotional Arousal and Autonomic Activation. Psychophysiology, 45(4), 602607.Google Scholar
Brenner, S. L., & Beauchaine, T. P. (2011). Pre‐Ejection Period Reactivity and Psychiatric Comorbidity Prospectively Predict Substance Use Initiation among Middle‐Schoolers: A Pilot Study. Psychophysiology, 48(11), 15881596.Google Scholar
Brown, C. C. (1967). A Proposed Standard Nomenclature for Psychophysiologic Measures. Psychophysiology, 4(2), 260264.Google Scholar
Brown, J. S., Kalish, H. I., & Farber, I. (1951). Conditioned Fear as Revealed by Magnitude of Startle Response to an Auditory Stimulus. Journal of Experimental Psychology, 41(5), 317328.CrossRefGoogle Scholar
Burkhouse, K. L., Siegle, G. J., & Gibb, B. E. (2014). Pupillary Reactivity to Emotional Stimuli in Children of Depressed and Anxious Mothers. Journal of Child Psychology and Psychiatry, 55(9), 10091016.Google Scholar
Burkhouse, K. L., Siegle, G. J., Woody, M. L., Kudinova, A. Y., & Gibb, B. E. (2015). Pupillary Reactivity to Sad Stimuli as a Biomarker of Depression Risk: Evidence from a Prospective Study of Children. Journal of Abnormal Psychology, 124(3), 498506.CrossRefGoogle ScholarPubMed
Burleson, M. H., Poehlmann, K. M., Hawkley, L. C., Ernst, J. M., Berntson, G. G., Malarkey, W. B., … Cacioppo, J. T. (2003). Neuroendocrine and Cardiovascular Reactivity to Stress in Mid‐Aged and Older Women: Long‐Term Temporal Consistency of Individual Differences. Psychophysiology, 40(3), 358369.Google Scholar
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (2007). Handbook of Psychophysiology. Cambridge: Cambridge University Press.Google Scholar
Camm, A. J., Malik, M., Bigger, J., Breithardt, G., Cerutti, S., Cohen, R., … Kleiger, R. (1996). Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 10431065.Google Scholar
Cannon, W. B. (1929). Bodily Changes in Pain, Fear, Hunger, and Rage. New York: Appleton.Google Scholar
Cannon, W. B. (1932). The Wisdom of the Body. New York: W. W. Norton.Google Scholar
Cellini, N., Whitehurst, L. N., McDevitt, E. A., & Mednick, S. C. (2016). Heart Rate Variability during Daytime Naps in Healthy Adults: Autonomic Profile and Short‐Term Reliability. Psychophysiology, 53(4), 473481.Google Scholar
Chalmers, J. A., Quintana, D. S., Maree, J., Abbott, A., & Kemp, A. H. (2014). Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. Frontiers in Psychiatry, 5, 111.Google Scholar
Chita-Tegmark, M. (2016). Social Attention in ASD: A Review and Meta-Analysis of Eye-Tracking Studies. Research in Developmental Disabilities, 48, 7993.Google Scholar
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd edn.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Coyne, J., & Sibley, C. (2016). Investigating the Use of Two Low Cost Eye Tracking Systems for Detecting Pupillary Response to Changes in Mental Workload. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 60, No. 1, pp. 3741). Los Angeles, CA: Sage’Google Scholar
Davis, M. (2006). Neural Systems Involved in Fear and Anxiety Measured with Fear-Potentiated Startle. American Psychologist, 61(8), 741756.Google Scholar
Davis, R. C. (1958). The Domain of Homeostasis. Psychological Review, 65(1), 813.Google Scholar
Dawson, M. E., Schell, A. M., & Bohmelt, A. H. (2008). Startle Modification: Implications for Neuroscience, Cognitive Science, and Clinical Science. Cambridge: Cambridge University Press.Google Scholar
Dawson, M. E., Schell, A. M., Braaten, J. R., & Catania, J. J. (1985). Diagnostic Utility of Autonomic Measures for Major Depressive Disorders. Psychiatry Research, 15(4), 261270.Google Scholar
Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The Electrodermal System. Handbook of Psychophysiology, 2, 200223.Google Scholar
Debat, V., & David, P. (2001). Mapping Phenotypes: Canalization, Plasticity and Developmental Stability. Trends in Ecology & Evolution, 16(10), 555561.Google Scholar
Delabarre, E. B. (1898). A Method of Recording Eye-Movements. The American Journal of Psychology, 9(4), 572574.Google Scholar
Diefendorf, A. R., & Dodge, R. (1908). An Experimental Study of the Ocular Reactions of the Insane from Photographic Records. Brain, 31(3), 451489.Google Scholar
Duchowski, A. T. (2007). Eye Tracking Methodology. Theory and Practice (3rd edn.). Basel: Springer International.Google Scholar
Eaton, R. C. (1984). Neural Mechanisms of Startle Behavior. New York: Springer Science & Business Media.Google Scholar
Einthoven, W., Fahr, G., & de Waart, A. (1913). Ueber die Rechtung und die Manifeste Grösse der Potential schwankungon im menschlechen Herzen und ueber den Einfluss der Herzglage auf die Form des Electrokardiogramms. Pflügers Archives European Journal of Physiology, 150, 275315.Google Scholar
Eppinger, H., Hess, L., Kraus, W. M., & Jelliffe, S. E. (1915). Vagotonia: A Clinical Study in Vegetative Neurology. New York: Nervous and Mental Disease Publishing Company.Google Scholar
Ettinger, U., Kumari, V., Crawford, T. J., Davis, R. E., Sharma, T., & Corr, P. J. (2003). Reliability of Smooth Pursuit, Fixation, and Saccadic Eye Movements. Psychophysiology, 40(4), 620628.Google Scholar
Exner, S. (1874). Experimental Investigation of the Simplest Mental Process: First Article. Pflugers Archiv: European Journal of Physiology, 7, 601660.Google Scholar
Farzin, F., Scaggs, F., Hervey, C., Berry-Kravis, E., & Hessl, D. (2011). Reliability of Eye Tracking and Pupillometry Measures in Individuals with Fragile X Syndrome. Journal of Autism and Developmental Disorders, 41(11), 15151522.Google Scholar
Fere, C. (1888). Note on Changes in Electrical Resistance under the Effect of Sensory Stimulation and Emotion. Comptes rendus des Seancs de la Societe de Biologie, 5, 2833.Google Scholar
Fowles, D. C. (1980). The Three Arousal Model: Implications of Gray’s Two‐Factor Learning Theory for Heart Rate, Electrodermal Activity, and Psychopathy. Psychophysiology, 17(2), 87104.Google Scholar
Franco, J., De Pablo, J., Gaviria, A., Sepulveda, E., & Vilella, E. (2014). Smooth Pursuit Eye Movements and Schizophrenia: Literature Review. Archivos de la Sociedad Española de Oftalmología (English Edition), 89(9), 361367.Google Scholar
Franzen, J., & Brinkmann, K. (2015). Blunted Cardiovascular Reactivity in Dysphoria during Reward and Punishment Anticipation. International Journal of Psychophysiology, 95(3), 270277.CrossRefGoogle ScholarPubMed
Freedman, L. W., Scerbo, A. S., Dawson, M. E., Raine, A., McClure, W. O., & Venables, P. H. (1994). The Relationship of Sweat Gland Count to Electrodermal Activity. Psychophysiology, 31(2), 196200.Google Scholar
Friedman, M. (1945). Studies Concerning the Etiology and Pathogenesis of Neurocirculatory Asthenia: III. The Cardiovascular Manifestations of Neurocirculatory Asthenia. American Heart Journal, 30(5), 478491.Google Scholar
Gatzke‐Kopp, L. M. (2016). Diversity and Representation: Key Issues for Psychophysiological Science. Psychophysiology, 53(1), 313.Google Scholar
Gavin, W., & Davies, P. (2008). Obtaining Reliable Psychophysiological Data with Child Participants: Methodological Considerations. In Developmental Psychophysiology: Theory, Systems, and Methods (pp. 424447). New York: Cambridge University Press.Google Scholar
Goldberger, E. (1945). The Validity of the Einthoven Triangle Hypothesis. American Heart Journal, 29(3), 369377.Google Scholar
Gooding, D. C., Iacono, W. G., & Beiser, M. (1994). Temporal Stability of Smooth‐Pursuit Eye Tracking in First‐Episode Psychosis. Psychophysiology, 31(1), 6267.Google Scholar
Gordan, R., Gwathmey, J. K., & Xie, L.-H. (2015). Autonomic and Endocrine Control of Cardiovascular Function. World Journal of Cardiology, 7(4), 204214.Google Scholar
Gorka, S. M., Lieberman, L., Shankman, S. A., & Phan, K. L. (2017). Startle Potentiation to Uncertain Threat as a Psychophysiological Indicator of Fear-Based Psychopathology: An Examination across Multiple Internalizing Disorders. Journal of Abnormal Psychology, 126(1), 818.Google Scholar
Granholm, E., Ruiz, I., Gallegos-Rodriguez, Y., Holden, J., & Link, P. C. (2016). Pupillary Responses as a Biomarker of Diminished Effort Associated with Defeatist Attitudes and Negative Symptoms in Schizophrenia. Biological Psychiatry, 80(8), 581588.Google Scholar
Gray, J. A. (1975). Elements of a Two-Process Theory of Learning. Oxford: Academic Press.Google Scholar
Harker, M. (2013). Psychological Sweating: A Systematic Review Focused on Aetiology and Cutaneous Response. Skin Pharmacology and Physiology, 26(2), 92100.Google Scholar
Hastrup, J. L. (1986). Duration of Initial Heart Rate Assessment in Psychophysiology: Current Practices and Implications. Psychophysiology, 23(1), 1518.Google Scholar
Hess, E. H., & Polt, J. M. (1960). Pupil Size as Related to Interest Value of Visual Stimuli. Science, 132(3423), 349350.Google Scholar
Hess, E. H., & Polt, J. M. (1964). Pupil Size in Relation to Mental Activity during Simple Problem-Solving. Science, 143(3611), 11901192.Google Scholar
Hirshoren, N., Tzoran, I., Makrienko, I., Edoute, Y., Plawner, M. M., Itskovitz-Eldor, J., & Jacob, G. (2002). Menstrual Cycle Effects on the Neurohumoral and Autonomic Nervous Systems Regulating the Cardiovascular System. Journal of Clinical Endocrinology & Metabolism, 87(4), 15691575.Google Scholar
Iacono, W. G., & Lykken, D. T. (1981). Two‐Year Retest Stability of Eye Tracking Performance and a Comparison of Electro‐Oculographic and Infrared Recording Techniques: Evidence of EEG in the Electro‐Oculogram. Psychophysiology, 18(1), 4955.Google Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of Psychiatry, 167(7), 748751.Google Scholar
James, W. (1884). What Is an Emotion? Mind, 9(34), 188205.Google Scholar
Jänig, W. (2008). Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. Cambridge: Cambridge University Press.Google Scholar
Jennings, J. R., Kamarck, T., Stewart, C., Eddy, M., & Johnson, P. (1992). Alternate Cardiovascular Baseline Assessment Techniques: Vanilla or Resting Baseline. Psychophysiology, 29(6), 742750.Google Scholar
Kathmann, N., Hochrein, A., Uwer, R., & Bondy, B. (2003). Deficits in Gain of Smooth Pursuit Eye Movements in Schizophrenia and Affective Disorder Patients and Their Unaffected Relatives. American Journal of Psychiatry, 160(4), 696702.Google Scholar
Kaye, J. T., Bradford, D. E., & Curtin, J. J. (2016). Psychometric Properties of Startle and Corrugator Response in NPU, Affective Picture Viewing, and Resting State Tasks. Psychophysiology, 53(8), 12411255.Google Scholar
Keefe, R. S., Silverman, J. M., Mohs, R. C., Siever, L. J., Harvey, P. D., Friedman, L., … Schmeidler, J. (1997). Eye Tracking, Attention, and Schizotypal Symptoms in Nonpsychotic Relatives of Patients with Schizophrenia. Archives of General Psychiatry, 54(2), 169176.Google Scholar
Kelsey, R. M., Ornduff, S. R., & Alpert, B. S. (2007). Reliability of Cardiovascular Reactivity to Stress: Internal Consistency. Psychophysiology, 44(2), 216225.Google Scholar
Kendler, K. S. (2009). An Historical Framework for Psychiatric Nosology. Psychological Medicine, 39(12), 19351941.Google Scholar
Kumra, S., Sporn, A., Hommer, D. W., Nicolson, R., Thaker, G., Israel, E., … Gochman, P. (2001). Smooth Pursuit Eye-Tracking Impairment in Childhood-Onset Psychotic Disorders. American Journal of Psychiatry, 158(8), 12911298.Google Scholar
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research–Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Frontiers in Psychology, 8, 118.Google Scholar
Lacey, J. I., & Lacey, B. C. (1958). The Relationship of Resting Autonomic Activity to Motor Impulsivity. Research Publications of the Association for Research in Nervous & Mental Disease, 36, 144209.Google Scholar
Lambert, R. H., Monty, R. A., & Hall, R. J. (1974). High-Speed Data Processing and Unobtrusive Monitoring of Eye Movements. Behavior Research Methods & Instrumentation, 6(6), 525530.CrossRefGoogle Scholar
Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at Pictures: Affective, Facial, Visceral, and Behavioral Reactions. Psychophysiology, 30(3), 261273.Google Scholar
Lang, P. J., & McTeague, L. M. (2009). The Anxiety Disorder Spectrum: Fear Imagery, Physiological Reactivity, and Differential Diagnosis. Anxiety, Stress, & Coping, 22(1), 525.Google Scholar
Larsen, P., Tzeng, Y., Sin, P., & Galletly, D. (2010). Respiratory Sinus Arrhythmia in Conscious Humans during Spontaneous Respiration. Respiratory Physiology & Neurobiology, 174(1), 111118.Google Scholar
Lehrer, P. M., & Gevirtz, R. (2014). Heart Rate Variability Biofeedback: How and Why Does It Work? Frontiers in Psychology, 5, 19.CrossRefGoogle ScholarPubMed
Levy, M. N. (1971). Brief Reviews: Sympathetic-Parasympathetic Interactions in the Heart. Circulation Research, 29(5), 437445.Google Scholar
Lieberman, L., Stevens, E. S., Funkhouser, C. J., Weinberg, A., Sarapas, C., Huggins, A. A., & Shankman, S. A. (2017). How Many Blinks are Necessary for a Reliable Startle Response? A Test Using the NPU-Threat Task. International Journal of Psychophysiology, 114, 2430.Google Scholar
Loewenfeld, I. E. (1999). The Pupil: Anatomy, Physiology, and Clinical Applications. Oxford: Butterworth-Heinemann.Google Scholar
Lubman, D. I., Yücel, M., Kettle, J. W., Scaffidi, A., MacKenzie, T., Simmons, J. G., & Allen, N. B. (2009). Responsiveness to Drug Cues and Natural Rewards in Opiate Addiction: Associations with Later Heroin Use. Archives of General Psychiatry, 66(2), 205212.Google Scholar
Lykken, D. T., & Venables, P. H. (1971). Direct Measurement of Skin Conductance: A Proposal for Standardization. Psychophysiology, 8(5), 656672.Google Scholar
Mckinley, P. S., King, A. R., Shapiro, P. A., Slavov, I., Fang, Y., Chen, I. S., … Sloan, R. P. (2009). The Impact of Menstrual Cycle Phase on Cardiac Autonomic Regulation. Psychophysiology, 46(4), 904911.Google Scholar
McTeague, L. M., & Lang, P. J. (2012). The Anxiety Spectrum and the Reflex Physiology of Defense: From Circumscribed Fear to Broad Distress. Depression and Anxiety, 29(4), 264281.Google Scholar
Moore, T., & Zirnsak, M. (2017). Neural Mechanisms of Selective Visual Attention. Annual Review of Psychology, 68, 4772.Google Scholar
Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). Rational Regulation of Learning Dynamics by Pupil-Linked Arousal Systems. Nature Neuroscience, 15(7), 10401046.CrossRefGoogle ScholarPubMed
Nelson, B. D., & Hajcak, G. (2017). Anxiety and Depression Symptom Dimensions Demonstrate Unique Relationships with the Startle Reflex in Anticipation of Unpredictable Threat in 8 to 14 Year-Old Girls. Journal of Abnormal Child Psychology, 45(2), 397410.Google Scholar
Nelson, B. D., Hajcak, G., & Shankman, S. A. (2015). Event‐Related Potentials to Acoustic Startle Probes during the Anticipation of Predictable and Unpredictable Threat. Psychophysiology, 52(7), 887894.Google Scholar
O’Driscoll, G. A., & Callahan, B. L. (2008). Smooth Pursuit in Schizophrenia: A Meta-Analytic Review of Research since 1993. Brain and Cognition, 68(3), 359370.Google Scholar
Ortiz, J., & Raine, A. (2004). Heart Rate Level and Antisocial Behavior in Children and Adolescents: A Meta-Analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 43(2), 154162.Google Scholar
Pabst, O., Tronstad, C., Grimnes, S., Fowles, D., & Martinsen, Ø. G. (2017). Comparison between the AC and DC Measurement of Electrodermal Activity. Psychophysiology, 54(3), 374385.Google Scholar
Papagiannopoulou, E. A., Chitty, K. M., Hermens, D. F., Hickie, I. B., & Lagopoulos, J. (2014). A Systematic Review and Meta-Analysis of Eye-Tracking Studies in Children with Autism Spectrum Disorders. Social Neuroscience, 9(6), 610632.Google Scholar
Payne, A. F., Schell, A. M., & Dawson, M. E. (2016). Lapses in Skin Conductance Responding across Anatomical Sites: Comparison of Fingers, Feet, Forehead, and Wrist. Psychophysiology, 53(7), 10841092.Google Scholar
Peysakhovich, V., Vachon, F., & Dehais, F. (2017). The Impact of Luminance on Tonic and Phasic Pupillary Responses to Sustained Cognitive Load. International Journal of Psychophysiology, 112, 4045.Google Scholar
Piferi, R. L., Kline, K. A., Younger, J., & Lawler, K. A. (2000). An Alternative Approach for Achieving Cardiovascular Baseline: Viewing an Aquatic Video. International Journal of Psychophysiology, 37(2), 207217.Google Scholar
Pittig, A., Arch, J. J., Lam, C. W., & Craske, M. G. (2013). Heart Rate and Heart Rate Variability in Panic, Social Anxiety, Obsessive-Compulsive, and Generalized Anxiety Disorders at Baseline and in Response to Relaxation and Hyperventilation. International Journal of Psychophysiology, 87(1), 1927.Google Scholar
Porges, S. W. (1992). Vagal Tone: A Physiologic Marker of Stress Vulnerability. Pediatrics, 90(3), 498504.Google Scholar
Porges, S. W. (1995). Orienting in a Defensive World: Mammalian Modifications of Our Evolutionary Heritage. A Polyvagal Theory. Psychophysiology, 32(4), 301318.Google Scholar
Portnoy, J., & Farrington, D. P. (2015). Resting Heart Rate and Antisocial Behavior: An Updated Systematic Review and Meta-Analysis. Aggression and Violent Behavior, 22, 3345.Google Scholar
Portnoy, J., Raine, A., Chen, F. R., Pardini, D., Loeber, R., & Jennings, J. R. (2014). Heart Rate and Antisocial Behavior: The Mediating Role of Impulsive Sensation Seeking. Criminology, 52(2), 292311.Google Scholar
Raine, A. (2002). Biosocial Studies of Antisocial and Violent Behavior in Children and Adults: A Review. Journal of Abnormal Child Psychology, 30(4), 311326.Google Scholar
Ramsay, D. S., & Woods, S. C. (2014). Clarifying the Roles of Homeostasis and Allostasis in Physiological Regulation. Psychological Review, 121(2), 225247.Google Scholar
Ray, W. J., Molnar, C., Aikins, D., Yamasaki, A., Newman, M. G., Castonguay, L., & Borkovec, T. D. (2009). Startle Response in Generalized Anxiety Disorder. Depression and Anxiety, 26(2), 147154.Google Scholar
Richards, A., French, C. C., Calder, A. J., Webb, B., Fox, R., & Young, A. W. (2002). Anxiety-Related Bias in the Classification of Emotionally Ambiguous Facial Expressions. Emotion, 2(3), 273287.Google Scholar
Rosenbaum, B. L., Bui, E., Marin, M.-F., Holt, D. J., Lasko, N. B., Pitman, R. K., … Milad, M. R. (2015). Demographic Factors Predict Magnitude of Conditioned Fear. International Journal of Psychophysiology, 98(1), 5964.Google Scholar
Roth, W. T., Telch, M. J., Taylor, C. B., Sachitano, J. A., Gallen, C. C., Kopell, M. L., … Pfefferbaum, A. (1986). Autonomic Characteristics of Agoraphobia with Panic Attacks. Biological Psychiatry, 21(12), 11331154.Google Scholar
Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication Recommendations for Electrodermal Measurements. Psychophysiology, 49(8), 10171034.Google Scholar
Roy, J.-C., Boucsein, W., Fowles, D. C., & Gruzelier, J. (2012). Progress in Electrodermal Research (Vol. 249). New York: Springer Science & Business Media.Google Scholar
Sarchiapone, M., Gramaglia, C., Iosue, M., Carli, V., Mandelli, L., Serretti, A., … Zeppegno, P. (2018). The Association between Electrodermal Activity (EDA), Depression and Suicidal Behaviour: A Systematic Review and Narrative Synthesis. BMC Psychiatry, 18(1), 127.Google Scholar
Scerbo, A. S., Freedman, L. W., Raine, A., Dawson, M. E., & Venables, P. H. (1992). A Major Effect of Recording Site on Measurement of Electrodermal Activity. Psychophysiology, 29(2), 241246.Google Scholar
Schächinger, H., Weinbacher, M., Kiss, A., Ritz, R., & Langewitz, W. (2001). Cardiovascular Indices of Peripheral and Central Sympathetic Activation. Psychosomatic Medicine, 63(5), 788796.Google Scholar
Schell, A. M., Dawson, M. E., Nuechterlein, K. H., Subotnik, K. L., & Ventura, J. (2002). The Temporal Stability of Electrodermal Variables Over a One-Year Period in Patients with Recent-Onset Schizophrenia and in Normal Subjects. Psychophysiology, 39(2), 124132.Google Scholar
Scott, L. N., Zalewski, M., Beeney, J. E., Jones, N. P., & Stepp, S. D. (2017). Pupillary and Affective Responses to Maternal Feedback and the Development of Borderline Personality Disorder Symptoms. Development and Psychopathology, 29(3), 10891104.Google Scholar
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & Doornen, L. J. (1990). Methodological Guidelines for Impedance Cardiography. Psychophysiology, 27(1), 123.Google ScholarPubMed
Sijtsema, J. J., Veenstra, R., Lindenberg, S., van Roon, A. M., Verhulst, F. C., Ormel, J., & Riese, H. (2010). Mediation of Sensation Seeking and Behavioral Inhibition on the Relationship between Heart Rate and Antisocial Behavior: The TRAILS Study. Journal of the American Academy of Child & Adolescent Psychiatry, 49(5), 493502.Google Scholar
Sirois, S., & Brisson, J. (2014). Pupillometry. Wiley Interdisciplinary Reviews: Cognitive Science, 5(6), 679692.Google Scholar
Sloan, D. M., & Sandt, A. R. (2010). Depressed Mood and Emotional Responding. Biological Psychology, 84(2), 368374.Google Scholar
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The Hierarchical Basis of Neurovisceral Integration. Neuroscience & Biobehavioral Reviews, 75, 274296.Google Scholar
Staib, M., Castegnetti, G., & Bach, D. R. (2015). Optimising a Model-Based Approach to Inferring Fear Learning from Skin Conductance Responses. Journal of Neuroscience Methods, 255, 131138.Google Scholar
Stein, M. B., Tancer, M. E., & Uhde, T. W. (1992). Heart Rate and Plasma Norepinephrine Responsivity to Orthostatic Challenge in Anxiety Disorders: Comparison of Patients with Panic Disorder and Social Phobia and Normal Control Subjects. Archives of General Psychiatry, 49 (4), 311317.Google Scholar
Sterling, P. (2004). Principles of Allostasis: Optimal Design, Predictive Regulation, Pathophysiology, and Rational. In Schulkin, J. (Ed.), Allostasis, Homeostasis, and the Costs of Physiological Adaptation (pp. 1764). Cambridge: Cambridge University Press.Google Scholar
Sterling, P., & Eyer, J. (1988). Allostasis: A New Paradigm to Explain Arousal Pathology. In Fisher, S. & Reason, J. (Eds.), Handbook of Life Stress, Cognition and Health (pp. 629649). Oxford: John Wiley.Google Scholar
Tarchanoff, J. (1890). Galvanic Phenomena in the Human Skin during Stimulation of the Sensory Organs and during Various Forms of Mental Activity. Pflügers Archiv für die gesammte Physiologie des Menschen und der Tiere, 46, 4655.Google Scholar
Tassinary, L. G., Hess, U., & Carcoba, L. M. (2012). Peripheral Physiological Measures of Psychological Constructs. APA Handbook of Research Methods in Psychology, 1, 461488.Google Scholar
Teixeira, A. L., Ramos, P. S., Vianna, L. C., & Ricardo, D. R. (2015). Heart Rate Variability across the Menstrual Cycle in Young Women Taking Oral Contraceptives. Psychophysiology, 52(11), 14511455.Google Scholar
Thayer, J. F., & Lane, R. D. (2000). A Model of Neurovisceral Integration in Emotion Regulation and Dysregulation. Journal of Affective Disorders, 61(3), 201216.Google Scholar
Thier, P., & Ilg, U. J. (2005). The Neural Basis of Smooth-Pursuit Eye Movements. Current Opinion in Neurobiology, 15(6), 645652.Google Scholar
Venables, P. H., & Christie, M. J. (1980). Electrodermal Activity. In Martin, I. & Venables, P. H. (Eds.), Techniques in Psychophysiology (pp. 367). New York: John Wiley.Google Scholar
Vigouroux, R. (1879). Sur le role de la resistance electrique des tissues dans l’electro-diagnostic. Comptes Rendus Societe de Biologie, 31, 336339.Google Scholar
Waddington, C. H. (1957). The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. With an Appendix by H. Kacser. London: Allen & UnwinGoogle Scholar
Watson, D. (2005). Rethinking the Mood and Anxiety Disorders: A Quantitative Hierarchical Model for DSM-5. Journal of Abnormal Psychology, 114(4), 522536.Google Scholar
Wilder, J. (1958). Modern Psychophysiology and the Law of Initial Value. American Journal of Psychotherapy, 12, 199221.Google Scholar
Yoshie, N., & Okudaira, T. (1969). Myogenic Evoked Potential Responses to Clicks in Man. Acta Oto-laryngologica, 67(sup252), 89103.Google Scholar
Young, L. R., & Sheena, D. (1975). Survey of Eye Movement Recording Methods. Behavior Research Methods & Instrumentation, 7(5), 397429.Google Scholar
Zahn, T. P., Frith, C. D., & Steinhauer, S. R. (1991). Autonomic Functioning in Schizophrenia: Electrodermal Activity, Heart Rate, Pupillography. In Steinhauer, S. R., Gruzelier, J. H., & Zubin, J. (Eds.), Handbook of Schizophrenia, Vol. 5. Neuropsychology, Psychophysiology, and Information Processing (pp. 185224). New York: Elsevier Science.Google Scholar
Zisner, A. R., & Beauchaine, T. P. (2016). Psychophysiological Methods and Developmental Psychopathology. In Cicchetti, D. (Ed.), Developmental Psychopathology (pp. 832884). Hoboken, NJ: John Wiley.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×