Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:10:09.018Z Has data issue: false hasContentIssue false

14 - Interpreting sabretooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns in felids

Published online by Cambridge University Press:  05 July 2014

Margaret E. Lewis
Affiliation:
The Richard Stockton College of New Jersey
Michael R. Lague
Affiliation:
The Richard Stockton College of New Jersey
Anjali Goswami
Affiliation:
University College London
Anthony Friscia
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Reconstructing the behaviour and ecology of extinct felids, especially that of machairodontine felids, has been of great interest within the field of vertebrate paleontology. The anatomical design of these animals has been investigated with respect to dental function and prey acquisition behaviour, and, to a lesser degree, locomotion.

Few large felids exist today, and machairodontine felids were sometimes even larger than the largest extant felids, lions and tigers. This leads to the question of how much of the morphology observed in large machairodontines is simply an extension of size-related shape trends observed in modern felids. That is, to what extent are the morphological differences between machairodontines and smaller extant felids due to differences in size? Which extinct forms appear to be scaled-up versions of smaller felids, and which ones exhibit morphology indicative of functional differences?

This preliminary study investigates machairodontine postcranial morphology in light of scaling patterns in extant felids and examines how well trends in smaller extant felids predict the morphology of larger felids. We also look for any overall trends in machairodontine postcranial morphology that unite them as a group, much like the possession of machairodont dentition does.

Type
Chapter
Information
Carnivoran Evolution
New Views on Phylogeny, Form and Function
, pp. 411 - 465
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. M. (1977). Allometry of the limbs of antelopes (Bovidae). Journal of Zoology (London), 183, 125–46.CrossRefGoogle Scholar
Alexander, R. M., Jayes, A. S., Maloiy, G. M. O. and Wathuta, E. M. (1979). Allometry of the limb bones of mammals from shrews (Sorex) to elephants (Loxodonta). Journal of Zoology, 189, 305–14.CrossRefGoogle Scholar
Alexander, R. M. and Pond, C. M. (1992). Locomotion and bone strength of the white rhinoceros (Ceratotherium simum). Journal of Zoology (London), 227, 63–69.CrossRefGoogle Scholar
Anderson, J. F., Hall-Martin, A. and Russell, D. A. (1985). Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology, London, 207, 53–61.CrossRefGoogle Scholar
Andersson, K. (2004). Predicting carnivoran body mass from a weight-bearing joint. Journal of Zoology, London, 262, 161–72.CrossRefGoogle Scholar
Antón, M. (2003). Notes on the reconstructions of fossil vertebrates from Lothagam. In Lothagam: Dawn of Humanity in East Africa, ed. Leakey, M. G. and Harris, J. M.. New York, NY: Columbia University Press, pp. 661–65.Google Scholar
Antón, M., Galobart, A. and Turner, A. (2005). Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene. Implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Quaternary Science Reviews, 24, 1287–301.CrossRefGoogle Scholar
Anyonge, W. (1993). Body mass in large extant and extinct carnivores. Journal of Zoology, London, 231, 339–50.CrossRefGoogle Scholar
Ballesio, R. (1963). Monographie d'un Machairodus du Gisement villafranchien de Senèze: Homotherium crenatidens Fabrini. Travaux du Laboratoire de Géologie de la Faculté des Sciences de Lyon, 9, 1–129.Google Scholar
Beaumont, G. de (1964). Remarques sur la classification des Felidae. Ecologae Geologicae Helvetiae, 57, 837–45.Google Scholar
Beaumont, G. de (1978). Notes complémentaires sur quelques félidés (Carnivores). Archives des Sciences, Genève, 31, 219–27.Google Scholar
Berta, A. (1987). The sabercat Smilodon gracilis from Florida and a discussion of its relationships (Mammalia, Felidae, Smilodontini). Bulletin of the Florida State Museum, Biological Sciences, 31, 1–63.Google Scholar
Berta, A. and Galiano, H. (1983). Megantereon hesperus from the late Hemphillian of Florida with remarks on the phylogenetic relationships of machairodonts (Mammalia, Felidae, Machairodontinae). Journal of Paleontology, 57, 892–99.Google Scholar
Bertram, B. C. R. and Biewener, A. A. (1990). Differential scaling of the long bones in the terrestrial Carnivora and other mammals. Journal of Morphology, 204, 157–69.CrossRefGoogle Scholar
Biewener, A. A. (1983). Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. Journal of Experimental Biology, 105, 147–71.Google ScholarPubMed
Biewener, A. A. (1990). Biomechanics of terrestrial locomotion. Science, 250, 1097–103.CrossRefGoogle ScholarPubMed
Biewener, A. A. and Taylor, C. R. (1986). Bone strain: a determinant of gait and speed?Journal of Experimental Biology, 123, 383–400.Google ScholarPubMed
Blob, R. W. (2000). Interspecific scaling of the hindlimb skeleton in lizards, crocodilians, felids and canids: does limb bone shape correlate with limb posture?Journal of Zoology, 250, 507–31.CrossRefGoogle Scholar
Bou, J. and Casinos, A. (1985). Scaling of bone mass to body mass in insectivores and rodents. In Functional Morphology in Vertebrates, ed. Duncker, H. R. and Fleischer, G.. Stuttgart: Gustav Fischer Verlag. pp. 61–64.Google Scholar
Bou, J., Casinos, A. and Ocana, J. (1987). Allometry of the limb long bones of insectivores and rodents. Journal of Morphology, 192, 113–23.CrossRefGoogle ScholarPubMed
Christiansen, P. (1999a). Long bone scaling and limb posture in non-avian theropods: evidence for differential allometry. Journal of Vertebrate Paleontology, 19, 666–80.CrossRefGoogle Scholar
Christiansen, P. (1999b). Scaling of mammalian long bones: small and large mammals compared. Journal of Zoology (London), 247, 333–48.CrossRefGoogle Scholar
Christiansen, P. (1999c). Scaling of the limb long bones to body mass in terrestrial mammals. Journal of Morphology, 239, 167–90.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Christiansen, P. and Adolfssen, J. S. (2007). Osteology and ecology of Megantereon cultridens SE311 (Mammalia; Felidae; Machairodontinae), a sabrecat from the Late Pliocene–Early Pleistocene of Senèze, France. Zoological Journal of the Linnean Society, 151, 833–84.CrossRefGoogle Scholar
Christiansen, P. and Harris, J. M. (2005). Body size of Smilodon (Mammalia: Felidae). Journal of Morphology, 266, 369–84.CrossRefGoogle Scholar
Churcher, C. S. (1966). The affinities of Dinobastis serus Cope 1893. Quaternaria, 8, 263–75.Google Scholar
Clutton-Brock, T. H. and Harvey, P. H. (1977). Primate ecology and social organization. Journal of Zoology, London, 183, 1–39.CrossRefGoogle Scholar
Cooke, H. B. S. (1991). Dinofelis barlowi (Mammalia, Carnivora, Felidae) cranial material from Bolt's Farm, collected by the University of California African Expedition. Palaeontologia Africana, 28, 9–21.Google Scholar
Cox, S. M. and Jefferson, G. T. (1988). The first individual skeleton of Smilodon from Rancho La Brea. Current Research in the Pleistocene, 5, 66–67.Google Scholar
Darroch, J. N. and Mosimann, J. E. (1985). Canonical and principal components of shape. Biometrika, 72, 241–52.CrossRefGoogle Scholar
Day, L. M. and Jayne, B. C. (2007). Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae). Journal of Experimental Biology, 210, 642–54.CrossRefGoogle Scholar
Ditchfield, P., Hicks, J., Plummer, T. W., Bishop, L. C. and Potts, R. (1999). Current research on the Late Pliocene and Pleistocene deposits north of Homa Mountain southwestern Kenya. Journal of Human Evolution, 36, 123–50.CrossRefGoogle ScholarPubMed
Feibel, C. S., Brown, F. H. and McDougall, I. (1989). Stratigraphic context of fossil hominids from the Omo Group deposits: northern Turkana basin, Kenya and Ethiopia. American Journal of Physical Anthropology, 78, 595–622.CrossRefGoogle ScholarPubMed
Garcia, G. J. M. and da Silva, J. K. L. (2004). On the scaling of mammalian long bones. Journal of Experimental Biology, 207, 1577–84.CrossRefGoogle ScholarPubMed
Gaudry, A. (1862–1867). Animaux fossiles et géologie de l'Attique. Paris, France.Google Scholar
Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, University of Michigan, 28, 79–92.Google Scholar
Graham, R. W. (1976). Pleistocene and Holocene Mammals, Taphonomy, and Paleoecology of the Friesenhahn Cave Local Fauna, Bexar County, Texas. Unpublished PhD dissertation, University of Texas, Austin.Google Scholar
Harvey, P. and Pagel, M. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Heinrich, R. E. and Biknevicius, A. R. (1998). Skeletal allometry and interlimb scaling patterns in mustelid carnivorans. Journal of Morphology, 235, 121–34.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Hemmer, H. (1972). Uncia uncia. Mammalian Species, 20, 1–5.
Hendey, Q. B. (1974). The late Cenozoic Carnivora of the south-western Cape Province. Annals of the South African Museum, 63, 1–369.Google Scholar
Hendey, Q. B. (1981). Palaeoecology of the late Tertiary fossil occurrences in ‘E’ Quarry, Langebaanweg, South Africa, and a reinterpretation of their geological context. Annals of the South African Museum, 84, 1–104.Google Scholar
Howell, A. B. (1944). Speed in Animals, Their Specialization for Running and Leaping. Chicago, IL: University of Chicago Press.Google Scholar
Hulbert, R. C.. (2001). Florida's fossil vertebrates, an overview. In The Fossil Vertebrates of Florida, ed. Hulbert, Jr R. C.. Gainesville, FL: University Press of Florida, pp. 25–33.Google Scholar
Johnson, W. E., Eizirik, E., Pecon-Slattery, J., et al. (2006). The Late Miocene radiation of modern Felidae: a genetic assessment. Science, 311, 73–77.CrossRefGoogle ScholarPubMed
Jungers, W. L. (1979). Locomotion, limb proportions, and skeletal allometry in lemurs and lorises. Folia Primatologia, 32, 8–28.CrossRefGoogle ScholarPubMed
Jungers, W. L. (1984a). Aspects of size and scaling in primate biology with special reference to the locomotor skeleton. Yearbook of Physical Anthropology, 27, 73–97.CrossRefGoogle Scholar
Jungers, W. L. (1984b). Scaling of the hominoid locomotor skeleton with special reference to lesser apes. In The Lesser Apes: Evolutionary and Behavioural Biology. ed. Preuschoft, H., Chivers, D. J., Brockelman, W. Y., and Creel, N.. Edinburgh: Edinburgh University Press, pp. 146–69.Google Scholar
Jungers, W. L. (1985). Size and Scaling in Primate Biology. New York, NY: Plenum Press.CrossRefGoogle Scholar
Jungers, W. L., Falsetti, A. and Wall, C. (1995). Shape, relative size, and size-adjustments in morphometrics. Yearbook of Physical Anthropology, 38, 137–61.CrossRefGoogle Scholar
Klein, R. G., Avery, G., Cruz-Uribe, K. and Steele, T. E. (2007). The mammalian fauna associated with an archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape Province, South Africa. Journal of Human Evolution, 52, 164–86.CrossRefGoogle ScholarPubMed
Kretzoi, M. (1929). Feliden-Studien. A Magyar Királyi Földtani Intézet Hazinyomdaja, 24, 1–22.
Kurtén, B. (1963). Notes on some Pleistocene mammal migrations from the Palaearctic to the Nearctic. Eiszeitalter und Gegenwart, 14, 96–103.Google Scholar
Lague, M. R. (2000). Patterns of sexual dimorphism in the joint surfaces of the elbow and knee of catarrhine primates. PhD thesis, State University of New York at Stony Brook.Google Scholar
Lague, M. R. (2009). Patterns of knee joint shape dimorphism in guenons (Cercopithecus) reflect interspecific scaling trends among cercopithecoid monkeys. American Journal of Physical Anthropology Supplement, 48, 172.Google Scholar
Lewis, M. E. (1995). Plio-Pleistocene carnivoran guilds: implications for hominid paleoecology. PhD thesis, State University of New York at Stony Brook.Google Scholar
Lewis, M. E. (1997). Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. Journal of Human Evolution, 32, 257–88.CrossRefGoogle ScholarPubMed
Lewis, M. E. (2001). Implications of interspecific variation in the postcranial skeleton of Homotherium (Felidae, Machairodontinae). Journal of Vertebrate Paleontology, 21, 73A.Google Scholar
Lewis, M. E. and Werdelin, L. (2007). Patterns of change in the Plio-Pleistocene carnivorans of eastern Africa: implications for hominin evolution. In Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence, ed. Bobe, R., Alemseged, Z. and Behrensmeyer, A. K.. The Netherlands: Springer-Verlag, pp. 77–105.CrossRefGoogle Scholar
Marean, C. W. and Ehrhardt, C. L. (1995). Paleoanthropological and paleoecological implications of the taphonomy of a sabertooth's den. Journal of Human Evolution, 29, 515–47.CrossRefGoogle Scholar
Martin, L. D. (1980). Functional morphology and the evolution of cats. Transactions of the Nebraska Academy of Sciences, 8, 141–54.Google Scholar
Martin, L. D., Schultz, C. B. and Schultz, M. R. (1988). Saber-toothed cats from the Plio-Pleistocene of Nebraska. Transactions of the Nebraska Academy of Sciences, XVI, 153–63.
Martin, L. D., Babiarz, J. P., Naples, V. L. and Hearst, J. (2000). Three ways to be a saber-toothed cat. Naturwissenschaften, 87, 41–44.CrossRefGoogle ScholarPubMed
McCarthy, R. C. (2001). Anthropoid cranial base architecture and scaling relationships. Journal of Human Evolution, 40, 41–66.CrossRefGoogle ScholarPubMed
McMahon, T. A. (1975). Allometry and biomechanics: limb bones of adult ungulates. American Naturalist, 107, 547–63.CrossRefGoogle Scholar
Méndez-Alzola, R. (1941). El Smilodon bonaërensis (Muñiz). Estudio osteológico y osteométrico del gran tigre de La Pampa comparado con otros félidos actuales y fósiles. Annales del Museo Argentino de Ciencias Naturales, 40, 135–252.Google Scholar
Morgan, G. S. and Hulbert, R. C.. (1995). Overview of the geology and vertebrate biochronology of the Leisey Shell Pit local fauna, Hillsborough County, Florida. Bulletin of the Florida Museum of Natural History, 37, 1–92.Google Scholar
O'Higgins, P. and Jones, N. (1998). Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. Journal of Anatomy, 198, 251–72.CrossRefGoogle Scholar
O'Regan, H. J. and Turner, A. (2002). The assessment of size in fossil Felidae. Estudios geológicos, 58, 45–54.Google Scholar
Organ, J. M. and Ward, C. V. (2006). Contours of the hominoid lateral tibial condyle with implications for Australopithecus. Journal of Human Evolution, 51, 113–27.CrossRefGoogle ScholarPubMed
Pienaar, U. de V. (1969). Predator–prey relationships amongst the larger mammals of the Kruger National Park. Koedoe, 12, 108–76.CrossRefGoogle Scholar
Piveteau, J. (1961). Les Carnivores. Traité de Paléontologie, Tome VI, Vol. 1, ed. Piveteau, J.. Paris: Masson et Cie, pp. 641–820.Google Scholar
Potts, R. (1988). Early Hominid Activities at Olduvai. New York, NY: Aldine de Gruyter Press.Google Scholar
Preuschoft, H. and Demes, B. (1985). Influence of size and proportions on the biomechanics of brachiation. In Size and Scaling in Primate Biology, ed. Jungers, W. L.. New York, NY: Plenum Press, pp. 383–99.CrossRefGoogle Scholar
Prothero, D. R. and Sereno, P. C. (1982). Allometry and ecology of middle Miocene dwarf rhinoceroses from the Texas Gulf coastal plain. Paleobiology, 8, 16–30.CrossRefGoogle Scholar
Rawn-Schatzinger, V. (1992). The scimitar cat Homotherium serum Cope: osteology, functional morphology, and predatory behavior. Illinois State Museum Reports of Investigations, 47, 1–80.Google Scholar
Ruff, C. B. (1987). Structural allometry of the femur and tibia in Hominoidea in Primates. Folia Primatologia, 48, 9–49.CrossRefGoogle Scholar
Ruff, C. B. (2000). Body size, body shape and long bone strength in modern humans. Journal of Human Evolution, 38, 269–90.CrossRefGoogle ScholarPubMed
Ruff, C. B. and Runestad, J. A. (1992). Primate limb bone structural adaptations. Annual Review of Anthropology, 21, 407–33.CrossRefGoogle Scholar
Schaller, G. B. (1972). The Serengeti Lion. Chicago, IL: University of Chicago Press.Google Scholar
Scott, K. M. (1985). Allometric trends and locomotor adaptations in the Bovidae. Bulletin of the American Museum of Natural History, 179, 197–288.Google Scholar
Scott, K. M. (1990). Postcranial dimensions as predictors of body mass. Body Size in Mammalian Paleobiology: Estimation and Biological Implications, ed. Damuth, J. D. and MacFadden, B. J.. Cambridge: Cambridge University Press, pp. 301–55.Google Scholar
Slater, G. J. and Van Valkenburgh, B. (2008). Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology, 34, 403–19.CrossRefGoogle Scholar
Smith, R. J. (1994). Degrees of freedom in interspecific allometry: an adjustment for the effects of phylogenetic constraint. American Journal of Physical Anthropology, 93, 95–107.CrossRefGoogle ScholarPubMed
Sunquist, M. E. and Sunquist, F. C. (2002). Wild Cats of the World. Chicago, IL: University of Chicago Press.Google Scholar
Turner, A. and Antón, M. (1997). The Big Cats and their Fossil Relatives: An Illustrated Guide to their Evolution and Natural History. New York, NY: Columbia University Press.Google Scholar
Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications, ed. Damuth, J. D., and MacFadden, B. J.. Cambridge: Cambridge University Press, pp. 181–205.Google Scholar
Walter, R. (1994). The age of Lucy and the First Family: single crystal 40Ar/39Ar dating of the Denen Dora and lower Kada Hadar Members of the Hadar Formation, Ethiopia. Geology, 22, 6–10.2.3.CO;2>CrossRefGoogle Scholar
Werdelin, L. (1983). Morphological patterns in the skull of cats. Biological Journal of the Linnean Society, 19, 375–91.CrossRefGoogle Scholar
Werdelin, L. (2003). Mio-Pliocene Carnivora from Lothagam, Kenya. In Lothagam: The Dawn of Humanity in Eastern Africa, ed. Leakey, M. G. and Harris, J. M.. New York, NY: Columbia University Press, pp. 261–678.Google Scholar
Werdelin, L. and Lewis, M. E. (2001). A revision of the genus Dinofelis (Mammalia, Felidae). Zoological Journal of the Linnean Society, 132, 147–258.CrossRefGoogle Scholar
Werdelin, L. and Lewis, M. E. (2005). Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zoological Journal of the Linnean Society, 144, 121–44.CrossRefGoogle Scholar
Werdelin, L., Yamaguchi, N., Johnson, W. E. and O'Brien, S. J. (in press). Felid phylogeny and evolution. In The Biology and Conservation of Wild Felids, ed. Macdonald, D. and Loveridge, A.. Oxford: Oxford University Press.
Zar, J. H. (1984). Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×