Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T06:00:17.157Z Has data issue: false hasContentIssue false

21 - Distinguishing Mechanisms of Behavioral Inhibition and Self-control

from Part II - Evolution of Memory Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

In this chapter, we explore the concept of self-control through a comparative and evolutionary perspective, we discuss how it is measured, and we outline the mechanisms that underlie this capacity (i.e., motivational factors, cognitive control, perception and learning, grit or perseverance, inhibition, as well as choice and commitment). An important concept addressed herein is the distinction between behavioral inhibition and self-control as related yet separate terms. In this endeavor, we briefly review tests of behavioral inhibition (e.g., the detour task, reverse reward contingency task) and self-control (working for more, intertemporal choice, delay of gratification, exchange, tool use, and sequenced travel tasks), outlining how these tasks shed light on the different mechanisms underlying inhibition versus self-control. We also discuss the role of control mechanisms within executive function tasks, such as the Stroop test, and how performance in these tasks is reflective of varying degrees of self-regulation and inhibition.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addessi, E., & Rossi, S. (2010). Tokens improve capuchin performance in the reverse–reward contingency task. Proceedings of the Royal Society of London B: Biological Sciences, rspb20101602. https://doi.org/10.1098/rspb.2010.1602CrossRefGoogle Scholar
Ainslie, G. W. (1974). Impulse control in pigeons. Journal of the Experimental Analysis of Behavior, 21, 485489. https://doi.org/10.1901/jeab.1974.21-485CrossRefGoogle ScholarPubMed
Albiach-Serrano, A., Guillén-Salazar, F., & Call, J. (2007). Mangabeys (Cercocebus torquatus lunulatus) solve the reverse contingency task without a modified procedure. Animal Cognition, 10, 387396. https://doi.org/10.1007/s10071-007-0076-5Google Scholar
Anderson, J. R., Awazu, S., & Fujita, K. (2000). Can squirrel monkeys (Saimiri sciureus) learn self-control: A study using food array selection tests and reverse-reward contingency. Journal of Experimental Psychology: Animal Behavior Processes, 26, 8797. https://doi.org/10.1037//0097-7403.26.1.87Google Scholar
Anderson, J. R., Hattori, Y., & Fujita, K. (2008). Quality before quantity: Rapid learning of reverse-reward contingency by capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 122, 445448. https://doi.org/10.1037/a0012624CrossRefGoogle ScholarPubMed
Auersperg, A. M. I., Laumer, I. B., & Bugnyar, T. (2013). Goffin cockatoos wait for qualitative and quantitative gains but prefer “better” to “more”. Biology Letters, 9, Article 20121092. https://doi.org/10.1098/rsbl.2012.1092CrossRefGoogle Scholar
Beck, B. B. (1980). Animal tool behavior: The use and manufacture of tools by animals. Garland STPM Press.Google Scholar
Beran, M. J. (2002). Maintenance of self-imposed delay of gratification by four chimpanzees (Pan troglodytes) and an orangutan (Pongo pygmaeus). Journal of General Psychology, 129, 4966. https://doi.org/10.1080/00221300209602032Google Scholar
Beran, M. J. (2015). The comparative science of “self-control”: What are we talking about? Frontiers in Psychology, 6, Article 51. https://doi.org/10.3389/fpsyg.2015.00051Google Scholar
Beran, M. J. (2018). Self-control in animals and people. Academic Press. https://doi.org/10.1016/C2016-0-03559-3Google Scholar
Beran, M. J., & Evans, T. A. (2006). Maintenance of delay of gratification by four chimpanzees (Pan troglodytes): The effects of delayed reward visibility, experimenter presence, and extended delay intervals. Behavioural Processes, 73, 315324. https://doi.org/10.1016/j.beproc.2006.07.005CrossRefGoogle ScholarPubMed
Beran, M. J., James, B. T., Whitham, W., & Parrish, A. E. (2016). Chimpanzees can point to smaller amounts of food to accumulate larger amounts but they still fail the reverse-reward contingency task. Journal of Experimental Psychology: Animal Learning and Cognition, 42, 347358. https://doi.org/10.1037/xan0000115Google Scholar
Beran, M. J., Perdue, B. M., Rossettie, M. S., James, B. T., Whitham, W., Walker, B., Futch, S. E., & Parrish, A. E. (2016). Self-control assessments of capuchin monkeys with the rotating tray task and the accumulation task. Behavioural Processes, 129, 6879. https://doi.org/10.1016/j.beproc.2016.06.007Google Scholar
Beran, M. J., Rossettie, M. S., & Parrish, A. E. (2016). Trading up: Chimpanzees (Pan troglodytes) show self-control through their exchange behavior. Animal Cognition, 19, 109121. https://doi.org/10.1007/s10071-015-0916-7CrossRefGoogle ScholarPubMed
Beran, M. J., Savage-Rumbaugh, E. S., Pate, J. L., & Rumbaugh, D. M. (1999). Delay of gratification in chimpanzees (Pan troglodytes). Developmental Psychobiology, 34, 119127. https://doi.org/10.1002/(sici)1098-2302(199903)34:2<119::aid-dev5>3.0.co;2-pGoogle Scholar
Boesch-Achermann, H., & Boesch, C. (1993). Tool use in wild chimpanzees: New light from dark forests. Current Directions in Psychological Science, 2, 1821. https://doi.org/10.1111/1467-8721.ep10770551Google Scholar
Boysen, S. T., & Berntson, G. G. (1995). Responses to quantity: Perceptual versus cognitive mechanisms in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 21, 8286. https://doi.org/10.1037//0097-7403.21.1.82Google Scholar
Boysen, S. T., Berntson, G. G., Hannan, M. B., & Cacioppo, J. T. (1996). Quantity-based interference and symbolic representations in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 22, 7686. https://doi.org/10.1037/0097-7403.22.1.76Google ScholarPubMed
Boysen, S. T., Mukobi, K. L., & Berntson, G. G. (1999). Overcoming response bias using symbolic representations of number by chimpanzees (Pan troglodytes). Animal Learning and Behavior, 27, 229235. https://doi.org/10.3758/BF03199679Google Scholar
Bramlett, J. L., Perdue, B. M., Evans, T. A., & Beran, M. J. (2012). Capuchin monkeys (Cebus apella) let lesser rewards pass them by to get better rewards. Animal Cognition, 15, 963969. https://doi.org/10.1007/s10071-012-0522-xGoogle Scholar
Brucks, D., Soliani, M., Range, F., & Marshall-Pescini, S. (2017). Reward type and behavioural patterns predict dogs’ success in a delay of gratification paradigm. Scientific Reports, 7, 42459. https://doi.org/10.1038/srep42459CrossRefGoogle Scholar
Byrne, R. W., Sanz, C. M., & Morgan, D. B. (2013). Chimpanzees plan their tool use. In Sanz, C. M., Call, J., & Boesch, C. (Eds.), Tool use in animals. Cognition and ecology (pp. 4864). Cambridge University Press. https://doi.org/10.1017/CBO9780511894800.004Google Scholar
Cheng, K. E. N., Peña, J., Porter, M. A., & Irwin, J. D. (2002). Self-control in honeybees. Psychonomic Bulletin & Review, 9, 259263. https://doi.org/10.3758/BF03196280CrossRefGoogle ScholarPubMed
De Petrillo, F., Gori, E., Micucci, A., Ponsi, G., Paglieri, F., & Addessi, E. (2015). When is it worth waiting for? Food quantity, but not food quality, affects delay tolerance in tufted capuchin monkeys. Animal Cognition, 18, 10191029. https://doi.org/10.1007/s10071-015-0869-xGoogle Scholar
Drapier, M., Chauvin, C., Dufour, V., Uhlrich, P., & Thierry, B. (2005). Food-exchange with humans in brown capuchin monkeys. Primates, 46, 241248. https://doi.org/10.1007/s10329-005-0132-1CrossRefGoogle ScholarPubMed
Duckworth, A. L., & Kern, M. L. (2011). A meta-analysis of the convergent validity of self-control measures. Journal of Research in Personality, 45, 259268. https://doi.org/10.1016/j.jrp.2011.02.004CrossRefGoogle ScholarPubMed
Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92, 10871101. https://doi.org/10.1037/0022-3514.92.6.1087CrossRefGoogle ScholarPubMed
Dufour, V., Pelé, M., Sterck, E. H. M., & Thierry, B. (2007). Chimpanzee (Pan troglodytes) anticipation of food return: Coping with waiting time in an exchange task. Journal of Comparative Psychology, 121, 145155. https://doi.org/10.1037/0735-7036.121.2.145CrossRefGoogle Scholar
Dufour, V., Wascher, C. A. F., Braun, A., Miller, R., & Bugnyar, T. (2012). Corvids can decide if a future exchange is worth waiting for. Biology Letters, 8, 201204. https://doi.org/10.1098/rsbl.2011.0726CrossRefGoogle Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143149. https://doi.org/10.3758/BF03203267Google Scholar
Evans, T. A., & Beran, M. J. (2007a). Delay of gratification and delay maintenance by rhesus macaques (Macaca mulatta). Journal of General Psychology, 134, 199216. https://doi.org/10.3200/GENP.134.2.199-216Google Scholar
Evans, T. A., & Beran, M. J. (2007b). Chimpanzees use self-distraction to cope with impulsivity. Biology Letters, 3, 599602. https://doi.org/10.1098/rsbl.2007.0399Google Scholar
Evans, T. A., & Westergaard, G. C. (2006). Self-control and tool use in tufted capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 120, 163166. https://doi.org/10.1037/0735-7036.120.2.163Google Scholar
Freeman, K. B., Nonnemacher, J. E., Green, L., Myerson, J., & Woolverton, W. L. (2012). Delay discounting in rhesus monkeys: Equivalent discounting of more and less preferred sucrose concentrations. Learning & Behavior, 40, 5460. https://doi.org/10.3758/s13420-011-0045-3Google Scholar
Galtress, T., Garcia, A., & Kirkpatrick, K. (2012). Individual differences in impulsive choice and timing in rats. Journal of the Experimental Analysis of Behavior, 98, 6587. https://doi.org/10.1901/jeab.2012.98-65CrossRefGoogle ScholarPubMed
Genty, E., Chung, P. C., & Roeder, J. J. (2011). Testing brown lemurs (Eulemur fulvus) on the reverse-reward contingency task without a modified procedure. Behavioural Processes, 86, 133137. https://doi.org/10.1016/j.beproc.2010.10.006Google Scholar
Genty, E., Palmier, C., & Roeder, J. J. (2004). Learning to suppress responses to the larger of two rewards in two species of lemurs, Eulemur fulvus and E. macaco. Animal Behaviour, 67, 925932. https://doi.org/10.1016/j.anbehav.2003.09.007Google Scholar
Genty, E., & Roeder, J. J. (2006). Self-control: Why should sea lions, Zalophus californianus, perform better than primates? Animal Behaviour, 72, 12411247. https://doi.org/10.1016/j.anbehav.2006.02.023Google Scholar
Grosch, J., & Neuringer, A. (1981). Self-control in pigeons under the Mischel paradigm. Journal of the Experimental Analysis of Behavior, 35, 321. https://doi.org/10.1901/jeab.1981.35-3Google Scholar
Hayden, B. Y., & Platt, M. L. (2007). Temporal discounting predicts risk sensitivity in rhesus macaques. Current Biology, 17, 4953. https://doi.org/10.1016/j.cub.2006.10.055Google Scholar
Hobhouse, L. T. (1901). Mind in evolution. The Macmillan Company.Google Scholar
Inzlicht, M., Schmeichel, B. J., & Macrae, C. N. (2014). Why self-control seems (but may not be) limited. Trends in Cognitive Sciences, 18, 127133. https://doi.org/10.1016/j.tics.2013.12.009CrossRefGoogle Scholar
Kabadayi, C., Bobrowicz, K., & Osvath, M. (2018). The detour paradigm in animal cognition. Animal Cognition 21, 2135. https://doi.org/10.1007/s10071-017-1152-0CrossRefGoogle ScholarPubMed
Kabadayi, C., Krasheninnikova, A., O’Neill, L., van de Weijer, J., Osvath, M., & von Bayern, A. M. (2017). Are parrots poor at motor self-regulation or is the cylinder task poor at measuring it? Animal Cognition, 20, 11371146. https://doi.org/10.1007/s10071-017-1131-5Google Scholar
Kabadayi, C., Taylor, L. A., von Bayern, A. M., & Osvath, M. (2016). Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. Royal Society Open Science, 3, 160104. https://doi.org/10.1098/rsos.160104Google Scholar
Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39, 341350. https://doi.org/10.1037/0003-066X.39.4.341Google Scholar
Kirkpatrick, K., Marshall, A. T., & Smith, A. P. (2015). Mechanisms of individual differences in impulsive and risky choice in rats. Comparative Cognition & Behavior Reviews, 10, 45. https://doi.org/10.3819/ccbr.2015.100003Google Scholar
Koepke, A. E., Gray, S. L., & Pepperberg, I. M. (2015). Delayed gratification: A Grey parrot (Psittacus erithacus) will wait for a better reward. Journal of Comparative Psychology, 129, 339346. https://doi.org/10.1037/a0039553Google Scholar
Köhler, W. (1925). The mentality of apes. Kegan Paul, Trench, Trubner & Co, Ltd.Google Scholar
Kralik, J. D. (2005). Inhibitory control and response selection in problem solving: How cotton-top tamarins (Saguinas oedipus) overcome a bias for selecting the larger quantity of food. Journal of Comparative Psychology, 119, 7889. https://doi.org/10.1037/0735-7036.119.1.78Google Scholar
Lempert, K. M., & Phelps, E. A. (2016). The malleability of intertemporal choice. Trends in Cognitive Sciences, 20, 6474. https://doi.org/10.1016/j.tics.2015.09.005Google Scholar
Leonardi, R. J., Vick, S. J., & Dufour, V. (2012). Waiting for more: The performance of domestic dogs (Canis familiaris) on exchange tasks. Animal Cognition, 15, 107120. https://doi.org/10.1007/s10071-011-0437-yGoogle Scholar
Logue, A. W. (1988). Research on self-control: An integrating framework. Behavioral and Brain Sciences, 11, 665679. https://doi.org/10.1017/S0140525X00053978Google Scholar
MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., … & Boogert, N. J. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences, 111, E2140E2148. https://doi.org/10.1073/pnas.1323533111Google Scholar
Madden, G. J., & Bickel, W. K. (Eds.) (2010). Impulsivity: The behavioral and neurological science of discounting. American Psychological Association.Google Scholar
Mischel, W. (2014). The marshmallow test: Mastering self-control. Little, Brown.Google Scholar
Mulcahy, N. J., & Call, J. (2006). Apes save tools for future use. Science, 312, 10381040. https://doi.org/10.1126/science.1125456Google Scholar
Murray, E. A., Kralik, J. D., & Wise, S. P. (2005). Learning to inhibit prepotent responses: successful performance by rhesus macaques, Macaca mulatta, on the reversed-contingency task. Animal Behaviour, 69(4), 991998. https://doi.org/10.1016/j.anbehav.2004.06.034Google Scholar
Osvath, M., & Osvath, H. (2008). Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: Self-control and pre-experience in the face of future tool use. Animal Cognition, 11, 661674. https://doi.org/10.1007/s10071-008-0157-0Google Scholar
Paglieri, F. (2013). The costs of delay: Waiting versus postponing in intertemporal choice. Journal of the Experimental Analysis of Behavior, 99, 362377. https://doi.org/10.1002/jeab.18Google Scholar
Paglieri, F., Addessi, E., Sbaffi, A., Tasselli, M. I., & Delfino, A. (2015). Is it patience or motivation? On motivational confounds in intertemporal choice tasks. Journal of the Experimental Analysis of Behavior, 103, 196217. https://doi.org/10.1002/jeab.118Google Scholar
Parrish, A. E., James, B. T., Rossettie, M. S., Smith, T., Otalora-Garcia, A., & Beran, M. J. (2018). Investigating the depletion effect: Self-control does not waiver in capuchin monkeys. Animal Behavior and Cognition, 5, 118138. https://doi.org/10.1002/jeab.118Google Scholar
Parrish, A. E., Otalora-Garcia, A., & Beran, M. J. (2017). Dealing with interference: Chimpanzees respond to conflicting cues in a food-choice memory task. Journal of Experimental Psychology: Animal Learning and Cognition, 43, 366376. https://doi.org/10.1037/xan0000151Google Scholar
Parrish, A. E., Perdue, B. M., Stromberg, E. E., Bania, A. E., Evans, T. A., & Beran, M. J. (2014). Delay of gratification by orangutans (Pongo pygmaeus) in the accumulation task. Journal of Comparative Psychology, 128, 209214. https://doi.org/10.1037/a0035660Google Scholar
Pelé, M., Dufour, V., Micheletta, J., & Thierry, B. (2010). Long-tailed macaques display unexpected waiting abilities in exchange tasks. Animal Cognition, 13, 263271. https://doi.org/10.1007/s10071-009-0264-6Google Scholar
Perdue, B. M., Bramlett, J. L., Evans, T. A., & Beran, M. J. (2015). Waiting for what comes later: Capuchin monkeys show self-control even for nonvisible delayed rewards. Animal Cognition, 18, 11051112. https://doi.org/10.1007/s10071-015-0878-9CrossRefGoogle ScholarPubMed
Rachlin, H. (2000). The science of self-control. Harvard University Press.Google Scholar
Rachlin, H., & Green, L. (1972). Commitment, choice, and self-control. Journal of the Experimental Analysis of Behavior, 17, 1522. https://doi.org/10.1901/jeab.1972.17-15Google Scholar
Seed, A., & Byrne, R. (2010). Animal tool-use. Current Biology, 20, R1032R1039. https://doi.org/10.1016/j.cub.2010.09.042Google Scholar
Shifferman, E. M. (2009). Its own reward: Lessons to be drawn from the reversed-reward contingency paradigm. Animal Cognition, 12, 547558. https://doi.org/10.1007/s10071-009-0215-2Google Scholar
Shumaker, R. W., Walkup, K. R., & Beck, B. B. (2011). Animal tool behavior: the use and manufacture of tools by animals. Johns Hopkins University Press.CrossRefGoogle Scholar
Silberberg, A., & Fujita, K. (1996). Pointing at smaller food amounts in an analogue of Boysen and Berntson’s procedure. Journal of the Experimental Analysis of Behavior, 66, 143147. https://doi.org/10.1901/jeab.1996.66-143Google Scholar
Simon, H. A. (1975). The functional equivalence of problem-solving skills. Cognitive Psychology, 7, 268288. https://doi.org/10.1016/0010-0285(75)90012-2Google Scholar
Stevens, J. R., Hallinan, E. V., & Hauser, M. D. (2005). The ecology and evolution of patience in two New World monkeys. Biology Letters, 1, 223226. https://doi.org/10.1098/rsbl.2004.0285CrossRefGoogle ScholarPubMed
Stevens, J. R., & Mühlhoff, N. (2012). Intertemporal choice in lemurs. Behavioural Processes, 89, 121127. https://doi.org/10.1016/j.beproc.2011.10.002Google Scholar
Stevens, J. R., Rosati, A. G., Heilbronner, S. R., & Mühlhoff, N. (2011). Waiting for grapes: Expectancy and delayed gratification in bonobos. International Journal of Comparative Psychology, 24, 99111. https://escholarship.org/uc/item/4km2r37jGoogle Scholar
Stevens, J. R., Rosati, A. G., Ross, K. R., & Hauser, M. D. (2005). Will travel for food: Spatial discounting in two New World monkeys. Current Biology, 15, 18551860. https://doi.org/10.1016/j.cub.2005.09.016Google Scholar
Stevens, J., & Stephens, D. (2010). The adaptive nature of impulsivity. In Madden, G. & Bickel, W. (Eds.), Impulsivity: The behavioral and neurological science of discounting (pp. 361387). American Psychological Association. https://doi.org/10.1037/12069-013Google Scholar
Strickland, J. C., & Johnson, M. W. (2020). Rejecting impulsivity as a psychological construct: A theoretical, empirical, and sociocultural argument. Psychological Review. Advance online publication. http://dx.doi.org/10.1037/rev0000263Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662. https://doi.org/10.1037/h0054651Google Scholar
Takahashi, T. (2005). Loss of self-control in intertemporal choice may be attributable to logarithmic time-perception. Medical Hypotheses, 65, 691693. https://doi.org/10.1016/j.mehy.2005.04.040Google Scholar
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. Macmillan.Google Scholar
Tobin, H., Chelonis, J. J., & Logue, A. W. (1993). Choice in self-control paradigms using rats. The Psychological Record, 43, 441454.Google Scholar
Tobin, H., & Logue, A. W. (1994). Self-control across species (Columba livia, Homo sapiens, and Rattus norvegicus). Journal of Comparative Psychology, 108, 126133. https://doi.org/10.1037/0735-7036.108.2.126Google Scholar
Tobin, H., Logue, A. W., Chelonis, J. J., Ackerman, K. T., & May, J. G. (1996). Self-control in the monkey Macaca fascicularis. Animal Learning and Behavior, 24, 168174. https://doi.org/10.3758/BF03198964CrossRefGoogle Scholar
Toner, I. J., Lewis, B. C., & Gribble, C. M. (1979). Evaluative verbalization and delay maintenance behavior in children. Journal of Experimental Child Psychology, 28, 205210. https://doi.org/10.1016/0022-0965(79)90084-5CrossRefGoogle Scholar
Toner, I. J., & Smith, R. A. (1977). Age and overt verbalization in delay-maintenance behavior in children. Journal of Experimental Child Psychology, 24, 123128. https://doi.org/10.1016/0022-0965(77)90025-XGoogle Scholar
Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453458. https://doi.org/10.1126/science.7455683CrossRefGoogle ScholarPubMed
Uher, J., & Call, J. (2008). How the great apes (Pan troglodytes, Pongo pygmaeus, Pan paniscus, Gorilla gorilla) perform on the reversed reward contingency task II: Transfer to new quantities, long-term retention, and the impact of quantity ratios. Journal of Comparative Psychology, 122, 204212. https://doi.org/10.1037/0735-7036.122.2.204Google Scholar
Vanderveldt, A., Oliveira, L., & Green, L. (2016). Delay discounting: Pigeon, rat, human – Does it matter? Journal of Experimental Psychology: Animal Learning and Cognition, 42, 141162. https://doi.org/10.1037/xan0000097Google Scholar
Vernouillet, A., Anderson, J., Clary, D., & Kelly, D. M. (2016). Inhibition in Clark’s nutcrackers (Nucifraga columbiana): results of a detour reaching test. Animal Cognition, 19, 661665. https://doi.org/10.1007/s10071-016-0952-yGoogle Scholar
Vick, S. J., Bovet, D., & Anderson, J. R. (2010). How do African grey parrots (Psittacus erithacus) perform on a delay of gratification task? Animal Cognition, 13, 351358. https://doi.org/10.1007/s10071-009-0284-2Google Scholar
Vlamings, P. H., Hare, B., & Call, J. (2010). Reaching around barriers: The performance of the great apes and 3–5-year-old children. Animal Cognition, 13, 273285. https://doi.org/10.1007/s10071-009-0265-5Google Scholar
Vlamings, P. H., Uher, J., & Call, J. (2006). How the great apes (Pan troglodytes, Pongo pygmaeus, Pan paniscus, and Gorilla gorilla) perform on a reversed contingency task: The effects of food quantity and food visibility. Journal of Experimental Psychology: Animal Behavior Processes, 32, 6070. https://doi.org/10.1037/0097-7403.32.1.60Google Scholar
Washburn, D. A. (1994). Stroop-like effects for monkeys and humans: Processing speed or strength of association? Psychological Science, 5, 375379. https://doi.org/10.1111/j.1467-9280.1994.tb00288.xGoogle Scholar
Zhang, H. H., Zhang, J., & Kornblum, S. (1999). A parallel distributed processing model of stimulus–stimulus and stimulus–response compatibility. Cognitive Psychology, 38, 386432. https://doi.org/10.1006/cogp.1998.0703Google Scholar
Zucca, P., Antonelli, F., & Vallortigara, G. (2005). Detour behaviour in three species of birds: quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria). Animal Cognition, 8, 122128. https://doi.org/10.1007/s10071-004-0243-xGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×