Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T17:37:10.169Z Has data issue: false hasContentIssue false

Chapter 58 - Dacrydium

Podocarpales: Dacrydiaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Evergreen shrubs to forest trees, to 10–55 m and 1.5 m dbh, with branchlets strongly whorled in origins. Leaves are slender, spreading all around shoots, crowded, densely spirally set on shoots which are spreading to descending or upsweeping or erect towards the tips of the shoots.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 399 - 421
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, F., Eva, H.D., Stibig, H.J. et al. 2002. Determination of deforestation rates of the world’s humid tropical forests. Science 297: 9991002.CrossRefGoogle ScholarPubMed
Ash, J. 1987. Stunted cloud forest in Taveuni, Fiji. Pacific Science 41: 191199.Google Scholar
Ashbury, C.E., Mcdowell, W.H., Trinidad-Pizarro, R. & Beerios, S. 1994. Solute deposition from cloud water to the canopy of a Puerto Rican montane forest. Atmospheric Environment 28: 17731780.CrossRefGoogle Scholar
Austin, A.T. & Vitousek, P.M. 1998. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113: 519529.CrossRefGoogle Scholar
Bawa, K.S. & Ashton, P.S. 1991. Conservation of rare trees in tropical rain forests: a genetic perspective. Pp 6271 in Falk, D.A. & Holsinger, K.E. (eds.), Genetics and Conservation of Rare Plants. Oxford: Oxford University Press.CrossRefGoogle Scholar
Beadle, N.C.W. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation with special reference to xeromorphy and sclerophylly. Ecology 47: 9921007.CrossRefGoogle Scholar
Beaman, J.H. & Beaman, R.S. 1998. The Plants of Mount Kinabalu. Kota Kinabalu: Natural History Publications.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Bruijnzeel, L.A. & Proctor, J. 1995. Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know ? Pp 2546 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds.), Tropical Montane Cloud Forests. Proceedings of an International Symposium. Honolulu, HI: East-West Center.Google Scholar
Bruijnzeel, L.A. & Veneklaas, E.J. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79(1): 39.CrossRefGoogle Scholar
Bruijnzeel, L.A., Waterloo, M.J., Proctor, J., Kuiters, A.T. & Kotterink, B. 1993. Hydrological observations in montane rainforests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81: 145167.CrossRefGoogle Scholar
Buchholz, J.T. 1933. Determinate cleavage polyembryony, with special reference to Dacrydium. Botanical Gazette 94: 579588.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica Through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Chien, P.D., Zuidema, P.A. & Nghia, N.H. 2008. Conservation prospects for threatened Vietnamese tree species: results from a demographic study. Population Ecology 50: 227237.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Clark, D.B., Clark, D.A. & Read, J.M. 1998. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology 86: 101112.CrossRefGoogle Scholar
Clarkson, B.D., Patel, R.N. & Clarkson, B.R. 1988. Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18: 417436.CrossRefGoogle Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cornell, S., Randell, A. & Jickells, T. 1995. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376(6537): 243246.CrossRefGoogle Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B 152: 491500.Google Scholar
Davies‐Colley, R.J. & Quinn, J.M. 1998. Stream lighting in five regions of North Island, New Zealand: control by channel size and riparian vegetation. New Zealand Journal of Marine and Freshwater Research 32(4): 591605.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Dawson, T.E. 1998. Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117: 476485.CrossRefGoogle ScholarPubMed
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274369.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts ? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence or Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross Island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Dick, J.McP. & Longman, K.A. 1985. Techniques for injecting chemicals into trees. Arboricultural Journal 9: 211214.CrossRefGoogle Scholar
Dörken, V.M. & Parsons, R.F. 2016. Morpho-anatomical studies on the change in the foliage of two imbricate-leaved New Zealand podocarps: Dacrycarpus dacrydioides and Dacrydium cupressinum. Plant Systematics and Evolution 302: 4154.CrossRefGoogle Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Druitt, D.G., Enright, N.J. & Ogden, J. 1990. Altitudinal zonation in the mountain forests of Mt. Hauhungatahi, North Island, New Zealand. Journal of Biogeography 17: 205220.CrossRefGoogle Scholar
Elliot, M.B. 1998. Late Quaternary pollen records of vegetation and climate change from Kaitaia Bog, far northern New Zealand. Review of Palaeobotany and Palynology 99: 189202.CrossRefGoogle Scholar
Ewing, H.A., Weathers, K.C., Templer, P.H., et al. 2009. Fog water and ecosystem function heterogeneity in a California redwood forest. Ecosystems 12: 417433.CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii mast flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungluska Svenska Vetenskapsakademiens Handlangar 10: 1588.Google Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Fascicule XIII. Les Podocarpines sauf les Podocarpus. Travaux du laboratoire forestier de Toulouse 2(3).Google Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae: megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Grubb, P.J. & Whitmore, T.C. 1966. A comparison of montane and lowland rain forest in Ecuador: II. The climate and its effects on the distribution and physiognomy of the forests. The Journal of Ecology 54: 303333.CrossRefGoogle Scholar
Harrington, R.A., Fownes, J.H. & Vitousek, P.M. 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of response to long-term fertilization. Ecosystems 4: 646657.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hawkins, B.J. & Sweet, G.B. 1989. The growth of three podocarp species under different nutrient regimes. New Zealand Journal of Botany 27: 305310.CrossRefGoogle Scholar
Herbert, D.A. & Fownes, J.H. 1995. Phosphorous limitation of forest leaf-area and net primary productivity on a weathered tropical soil. Biogeochemistry 111: 233235.Google Scholar
Hiatt, C., Fernández, D. & Potter, C. 2012. Measurements of fog water deposition on the California Central Coast. Atmospheric and Climate Sciences 2: 525531.CrossRefGoogle Scholar
Hiep, N.T., Loc, P.K., Luu, N.D.T., et al. 2004. Vietnam Conifers Conservation Status Review. Hanoi: Labour and Society Publisher.Google Scholar
Hietz, P., Wolfgang, W., Wania, R. & Nadkarni, N. 2002. Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphytic nutrition. Oecologia 131: 350355.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390420 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hill, R.S., Truswell, E.M., McLoughlin, S. & Dettmann, M.E. 1999. Evolution of the Australian flora: fossil evidence. Pp 251320 in Orchard, A.E. and Thompson, H.S. (eds.), Flora of Australia, 2nd edn. Melbourne: ABRS/CSIRO.Google Scholar
Jaffré, T. 1980. Etude ecologique de peuplement vegetal des sols derives des roches ultramafiques en Nouvelle Caledonia. Coll. Trav. et Doc. ORSTOM 124: 274.Google Scholar
Jaffré, T. & Veillon, J.-M. 1990. Etudes floristique et structurale de deux forets denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Adansonia 3: 243272.Google Scholar
Johns, R.J., Edwards, P.J., Utteridge, T.M.A. & Hopkins, H.C.F. 2006. Alpine and Subalpine Flora of Mount Jaya. London: Royal Botanic Gardens Kew.Google Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kershaw, A.P., McKenzie, G.M. & McMinn, A. 1993. A Quaternary vegetation history of northeastern Queensland from pollen analysis of ODP site 820. Proceedings of the Ocean Drilling Program, Scientific Results 133: 107114.Google Scholar
Kitayama, K. 1992. Comparative vegetation analysis on the wet slopes of two tropical mountains: Mt. Haleakala, Hawaii, and Mt. Kinabalu, Borneo. PhD Dissertation, University of Hawaii, Honolulu, HI.Google Scholar
Kitayama, K. & Aiba, S. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90: 3751.CrossRefGoogle Scholar
Kitayama, K., Aiba, S., Majalap-Lee, N. & Ohsawa, M. 1998. Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecological Research 13: 301312.CrossRefGoogle Scholar
Kitayama, K., Aiba, S.-I., Ushio, M., Seino, T. & Fujiki, Y. 2011. The ecology of podocarps in tropical montane forests of Borneo: distribution, population dynamics, and soil nutrient acquisition. Smithsonian Contributions to Botany 95: 101117.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T., & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Maki, T., Ishikawa, T., Mastunaga, T., et al. 2016. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean. Deep Sea Research 1(118): 3745.CrossRefGoogle Scholar
Markham, K., Webby, R.F., Molloy, B.P.J. & Vilain, C. 1989. Support from flavenoid glycoside distribution for the division of Dacrydium sensu lato. New Zealand Journal of Botany 27: 111.CrossRefGoogle Scholar
Martin, H.A. 1981. The Tertiary flora. Pp 391406 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
McCoy, S., Jaffré, T., Rigault, F. & Ash, J.E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26: 579594.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Nghia, N.H. 2000. Some Threatened Tree Species of Vietnam. Hanoi: Agriculture Publisher.Google Scholar
Nomura, N. & Kikuzawa, K. 2003. Productive phenology of tropical montane forests: fertilization experiments along a moisture gradient. Ecological Research 18: 573586.CrossRefGoogle Scholar
Page, C.N. 1979. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1990. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 445466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Amsterdam: Elsevier Academic Press.Google Scholar
Page, C.N. & Brownsey, P.J. 1986. Tree-fern skirts: a defence against climbers and large epiphytes. Journal of Ecology 74: 787796.CrossRefGoogle Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Parsons, J.J. 1960. Fog drip from coastal stratus, with special reference to California. Weather (London) 15: 5862.CrossRefGoogle Scholar
Pengklai, C. 1975. Podocarpaceae. Pp 197203 in Flora of Thailand II. Bangkok: Applied Scientific Research Corporation of Thailand.Google Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Quinn, C.J. 1982. Taxonomy of Dacrydium Sol. Ex Lamb. Emend De Laub. (Podocarpaceae). Australian Journal of Botany 30: 311320.CrossRefGoogle Scholar
Quinn, C.J. & Gadek, P. 1981. Biflavones of Dacrydium sensu lato. Phytochemistry 20(4): 677681.CrossRefGoogle Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Reinink-Smith, L.M. & Leopold, E.B. 2005. Warm climate in the late Miocene of the south coast of Alaska and the occurrence of Podocarpaceae pollen. Palynology 29: 205262.CrossRefGoogle Scholar
Rundel, P.W., Sharfi, M.A., Kohl-Rundel, J. & Middleton, D.J. 2016. Dacrydium elatum (Podocarpaceae) in the mountain cloud forests of Bokor Mountain, Cambodia. Cambodian Journal of Natural History 2: 9097.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Smale, M.C., Burns, B.R., Smale, P.N. & Whaley, P.T. 1997. Dynamics of upland podocarp/broadleaved forest on Mamaku Plateau, Central North Island, New Zealand. Journal of the Royal Society of New Zealand 27: 513532.CrossRefGoogle Scholar
Sodhi, N.S., Koh, L.P., Brook, B.W. & Ng, P.K.L. 2004. Southeast Asian biodiversity: an impending disaster. Trends in Ecology and Evolution 19: 654660.CrossRefGoogle Scholar
Stockey, R.A. & Ko, H. 1990. Cuticle micromorphology of Dacrydium (Podocarpaceae) from new Caledonia. Botanical Gazette 151: 138149.CrossRefGoogle Scholar
Tanner, E.V., Kapos, V., Freskos, S., Healey, J.R. & Theobald, A.M. 1990. Nitrogen and phosphorus fertilization of Jamaican montane forest trees. Journal of Tropical Ecology 6(2): 231238.CrossRefGoogle Scholar
Tegner, J. 1965. Dacrydium: anatomy and taxonomy. Botaniska Notiser 118: 450452.Google Scholar
Turner, B.L., Condron, L.M., Richardson, S.J., Peltzer, D.A. & Allison, V.J. 2007. Soil organic phosphorus transformations during pedogenesis. Ecosystems 10: 11661181.CrossRefGoogle Scholar
Turner, J.M. 1994. Sclerophylly: primarily protective? Functional Ecology 8: 669675.CrossRefGoogle Scholar
Unsworth, M.H. & Crossley, A. 1987. Consequences of cloud water deposition on vegetation at high elevation. Pp 171188 in Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. Berlin: Springer.CrossRefGoogle Scholar
Van Steenis, C.G.G. 1972. Nothofagus, key genus to plant geography. Blumea 19: 6598.Google Scholar
Weathers, K.C. & Likens, G.E. 1997. Clouds in southern Chile: an important source of nitrogen to nitrogen-limited ecosystems. Environmental Science and Technology 31: 210213.CrossRefGoogle Scholar
Weathers, K.C., Lovett, G.M., Likens, G.E. & Lathrop, R. 2000. The effect of landscape features on deposition to Hunter Mountain, Catskill Mountains, New York. Ecological Applications 10(2): 528540.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar
Werner, W.L. 1997. Pines and other conifers in Thailand: a Quaternary relic? Journal of Quaternary Science 12: 451454.3.0.CO;2-F>CrossRefGoogle Scholar
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Whitmore, T.C. 1997. Tropical forest disturbance, disappearance, and species loss. Pp 312 in Laurance, E.R. & Bierregaard, R.O. (eds.), Tropical Forest Remnants: Ecology, Management and Conservation of Fragmented Communities. Chicago, IL: University of Chicago Press.Google Scholar
Whitmore, T.C. 2003. Expedition to Kubunitu. Biotropical 35: 560561.CrossRefGoogle Scholar
Yamaguchi, T., Katata, G., Noguchi, I., et al. 2015. Long-term observations of fog chemistry and estimation of fog water and nitrogen input via fog water deposition at a mountainous site in Hokkaido, Japan. Atmospheric Research 151: 8292.CrossRefGoogle Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dacrydium
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dacrydium
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dacrydium
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.022
Available formats
×