Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- List of Abbreviations
- Introduction
- Part I Basics of Gauge Theories
- Part II The StandardModel
- Part III Weak Decays in the StandardModel
- 3 Weak Decays at Tree Level
- 4 Weak Decays at Tree Level
- 5 Short-Distance Structure ofWeak Decays
- 6 Effective Hamiltonians for FCNC Processes
- 7 Nonperturbative Methods in Weak Decays
- 8 Particle-Antiparticle Mixing and CP Violation in the Standard Model
- 9 Rare B and K Decays in the Standard Model
- 10 ε′/ε in the Standard Model
- 11 Charm Flavor Physics
- 12 Status of Flavor Physics within the Standard Model
- Part IV Weak Decays beyond the StandardModel
- Appendix A Dirac Algebra, Spinors, Pauli and Gell-Mann Matrices
- Appendix B Feynman Rules of the Standard Model
- Appendix C Massive Loop Integrals
- Appendix D Numerical Input
- Appendix E Analytic Solutions to SMEFT RG Equations
- References
- Index
3 - Weak Decays at Tree Level
from Part III - Weak Decays in the StandardModel
Published online by Cambridge University Press: 11 June 2020
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgements
- List of Abbreviations
- Introduction
- Part I Basics of Gauge Theories
- Part II The StandardModel
- Part III Weak Decays in the StandardModel
- 3 Weak Decays at Tree Level
- 4 Weak Decays at Tree Level
- 5 Short-Distance Structure ofWeak Decays
- 6 Effective Hamiltonians for FCNC Processes
- 7 Nonperturbative Methods in Weak Decays
- 8 Particle-Antiparticle Mixing and CP Violation in the Standard Model
- 9 Rare B and K Decays in the Standard Model
- 10 ε′/ε in the Standard Model
- 11 Charm Flavor Physics
- 12 Status of Flavor Physics within the Standard Model
- Part IV Weak Decays beyond the StandardModel
- Appendix A Dirac Algebra, Spinors, Pauli and Gell-Mann Matrices
- Appendix B Feynman Rules of the Standard Model
- Appendix C Massive Loop Integrals
- Appendix D Numerical Input
- Appendix E Analytic Solutions to SMEFT RG Equations
- References
- Index
Summary
This chapter presents the technology of quantum field theory at the one-loop level including general comments and results of two and higher loop calculationsthat we will need later on. The main goal here isthe presentation of the dimensional regularization and the development of the technologyfor one-loop calculations. The next goal isthe presentation of therenormalization and the renormalization group methods. While our presentation is rather general, we will show explicit results only in QCD and QED. The case of the renormalization of electroweak interactions willbe discussed briefly. One of the important results of this chapter will be the collection of integrals necessary not only to performthe renormalization of QED and QCD but also those that will be crucial for one-loop calculations at all stages of our expedition. We collected these integrals in an appendix.
Keywords
- Type
- Chapter
- Information
- Gauge Theory of Weak Decays , pp. 87 - 102Publisher: Cambridge University PressPrint publication year: 2020