Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T05:33:36.106Z Has data issue: false hasContentIssue false

9 - Eolian dunes and deposits in the western United States as analogs to wind-related features on Mars

Published online by Cambridge University Press:  18 September 2009

James R. Zimbelman
Affiliation:
National Air and Space Museum, Smithsonian Institution, Washington
Steven H. Williams
Affiliation:
National Air and Space Museum, Smithsonian Institution, Washington
Mary Chapman
Affiliation:
United States Geological Survey, Arizona
Get access

Summary

Introduction

Eolian processes produce distinctive features and deposits on planetary surfaces where the atmosphere is sufficiently dense to allow interactions between the wind and sediments on the surface (Greeley and Iversen, 1985). Arid and semi-arid regions on Earth contain abundant evidence of wind–surface interactions (e.g., Lancaster, 1995a; Thomas, 1997), and the Martian surface shows a diverse array of eolian features across the planet (e.g., Greeley et al., 1992). The characteristics of several eolian localities (primarily sand dunes) in the western part of the United States have been used previously as analogs to features seen on Mars in data obtained from several spacecraft (e.g., Greeley et al., 1978; Greeley and Iversen, 1987; Golombek et al., 1995), yet the analog potential of other western eolian sites is relatively underutilized. Rather than attempting a comprehensive survey of all eolian features in the United States, this chapter will focus on several examples illustrative of a variety of dune forms and their potential applicability as analogs to eolian features observed on Mars. Dunes in the Great Plains, east of the Rocky Mountains, and all coastal dunes are excluded from this survey in order to concentrate on discrete sand accumulations in arid or semi-arid environments. Both traditional publications and selected internet sites (cited here as W#) are referenced throughout the text.

Eolian features in the western United States reflect varying climatic and drainage conditions that have directly contributed to the formation of the individual deposits.

Type
Chapter
Information
The Geology of Mars
Evidence from Earth-Based Analogs
, pp. 232 - 264
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, P. L. (1980). Provenance of Salton Dunes, southwest of the Salton Sea, California. In Geology and Mineral Wealth of the California Desert, ed. Fife, D.. Santa Ana, CA: South Coast Geological Association, pp. 409–13.Google Scholar
Ahlbrandt, T. S. (1973). Sand dunes, geomorphology and geology, Killpecker Creek area, northern Sweetwater county, Wyoming. Ph.D. dissertation, University of Wyoming.
Ahlbrandt, T. S. (1974a). The source and sand for the Killpecker sand dune field, southwestern Wyoming. Sedimentary Geology, 11, 39–57.CrossRefGoogle Scholar
Ahlbrandt, T. S. (1974b). Dune stratigraphy, archaeology, and the chronology of the Killpecker dune field. In Applied Geology and Archeology – The Holocene History of Wyoming, ed. Wilson, M.. Wyoming Geological Survey Report of Investigations, 10, 51–60.Google Scholar
Ahlbrandt, T. S. (1975). Comparison of textures and structures to distinguish aeolian environments, Killpecker dune field, Wyoming. Mountain Geologist, 12 (2), 61–73.Google Scholar
Alt, D. (2001). Glacial Lake Missoula and its Humongous Floods. Missoula, MT: Mountain Press.Google Scholar
Andrews, S. (1981). Sedimentology of Great Sand Dunes, Colorado. In Recent and Ancient Non-marine Depositional Environments: Models for Exploration, ed. Ethridge, F. P. and Flores, R. M.. Society of Economic Paleontologists and Mineralogists Special Publication 31, pp. 279–91.CrossRefGoogle Scholar
Bagnold, R. A. (1941). The Physics of Blown Sand and Desert Dunes. London: Chapman and Hall (reprinted in 1973).Google Scholar
Baker, V. R. (1973). Paleohydrology and sedimentology of Lake Missoula flooding in eastern Washington. Geological Society of America Special Paper 144.CrossRef
Baker, V. R., Strom, R. G., Croft, S. K.et al. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 89–594.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R. (2000). A global view of Martian surface compositions from MGS-TES. Science, 287, 1626–30.CrossRefGoogle Scholar
Bandfield, J. L., Edgett, K. S., and Christensen, P. R. (2002). Spectroscopic study of the Moses Loake dune field, Washington: determination of compositional distributions and source lithologies. Journal of Geophysical Research, 107 (E11), doi:10.1029/2000JE001469.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr. (2004). Identification of quartzofeldspathic materials on Mars. Journal of Geophysical Research, 109, doi:10.1029/2004JE002290.CrossRefGoogle Scholar
Benson, L. V., Currey, D. R., Dorn, R. I.et al. (1990). Chronology of expansion and contraction of four Great Basin lake systems during the past 35,000 years. Paleogeography, Paleoclimatology, Paleoecology, 78, 241–86.CrossRefGoogle Scholar
Billingsley, G. H. (1987). Geologic map of the southwestern Moenkopi Plateau and southern Ward terrace, Coconino county, Arizona. US Geological Survey Miscellaneous Investigations Series Map I-1793, scale 1:31,680.Google Scholar
Binder, A. B., Arvidson, R. E., Guinness, E. A.et al. (1977). The geology of the Viking Lander 1 site. Journal of Geophysical Research, 82 (28), 4439–51.CrossRefGoogle Scholar
Breed, C. S., Fryberger, S. G., Andrews, S.et al. (1979). Regional studies of sand seas, using Landsat (ERTS) imagery. US Geological Survey Professional Paper 1052, pp. 305–97.Google Scholar
Breed, C. S., Grolier, M., McCauley, J. et al. (1984). Eolian (wind formed) landscapes. In Landscapes of Arizona, the Geological Story, ed. Smiley, T. L., Nations, J. D., and Pewe, T. L.. University Presses of America, pp. 359–413.Google Scholar
Bridges, N. T., Greeley, R., Haldemann, A. F. C.et al. (1999). Ventifacts at the Pathfinder landing site. Journal of Geophysical Research, 104 (E4), 8595–616.CrossRefGoogle Scholar
Burford, A. E. and Hutchinson, D. M. (1968). Insight into origin of the Great Sand Dunes, Colorado. Geological Society of America Special Paper115.Google Scholar
Carr, M. H. (1996). Water on Mars. Oxford: Oxford University Press.Google Scholar
Chadwick, H. W. and Dalke, P. D. (1965). Plant succession on dune sands in Fremont County, Idaho. Ecology, 46, 675–780.CrossRefGoogle Scholar
Christensen, P. R. (2003). Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature, 422, 45–8.CrossRefGoogle ScholarPubMed
Christensen, P. R., Anderson, D. L., Chase, S. C.et al. (1998). Results from the Mars Global Surveyor Thermal Emission Spectrometer. Science, 279, 1692–8.CrossRefGoogle ScholarPubMed
Christensen, P. R., Bandfield, J. L., Hamilton, V. E.et al. (2001). Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. Journal of Geophysical Research, 106 (E10), 23823–71.CrossRefGoogle Scholar
Cooke, R. U. and Warren, A. (1973). Geomorphology in Deserts. Berkeley: University of California Press.Google Scholar
Criswell, D. R., Lindsay, J. F., and Reasoner, D. L. (1975). Seismic and acoustic emissions of a booming dune. Journal of Geophysical Research, 80 (35), 4963–74.CrossRefGoogle Scholar
Dort, W. (1959). Sand dunes of northeastern Snake river Plain, Idaho. Geological Society of America Bulletin, 69, 1555 (abstract).Google Scholar
Earl, P. I. (1981). Sand mountain: dune of mystery. California Mining Journal, 51, 67–8.Google Scholar
Edgett, K. S. (1994). The volcaniclastic shifting sand dunes of Christmas Lake Valley, Oregon. In The sand component of the modern Martian aeolian sedimentary system. Ph.D. dissertation, Arizona State University, Tempe, pp. 145–201.
Edgett, K. S. (2002). Low-albedo surfaces and eolian sediment: Mars Orbiter Camera views of western Arabia Terra craters and wind streaks. Journal of Geophysical Research – Planets, 107, doi: 10.1029/2001JE001587.CrossRefGoogle Scholar
Edgett, K. S. and Lancaster, N. (1993). Volcanoclastic aeolian dunes. Journal of Arid Environments, 25, 271–97.CrossRefGoogle Scholar
Edgett, K. S. and Parker, T. J. (1997). Water on early Mars: possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia Terra and Sinus Meridiani. Geophysical Research Letters, 24, 2897–900.CrossRefGoogle Scholar
Edgett, K. S. and Malin, M. C. (2000). New views of Mars eolian activity, materials, and surface properties: three vignettes from the Mars Global Surveyor Mars Orbiter Camera. Journal of Geophysical Research – Planets, 105, 1623–50.CrossRefGoogle Scholar
Eissmann, L. J. (1990). Eolian sand transport in western Nevada, M.S. thesis, University of Nevada, Reno.
Epps, T. M., Britten, H. B., and Rust, R. W. (2000). Allozyme variability, isolation, and dispersal of Eusattus Muricatus (Coleoptera: Tenebrionidae) within Silver State dune complex, Great Basin, western North America. Western North American Naturalist, 60, 281–90.Google Scholar
Fenton, L. K., Richardson, M. I., and Toigo, A. D. (2002). Sand transport in Proctor crater on Mars based on dune morphology and mesoscale modeling. Lunar and Planetary Science XXXIII. Houston; TX: Lunar and Planetary Institute, Abstract 1953.Google Scholar
Ford, R. L. and Gilman, S. L. (2000). Geology of Coral Pink Sand Dunes. In Geology of Utah's Parks and Monuments, ed. Sprinkel, D. A., Chidsey, T. C. J., and Anderson, P. B.. Salt Lake City: Utah Geological Association, pp. 365–89.Google Scholar
Forsythe, R. D. and Zimbelman, J. R. (1995). A case for ancient evaporite basins on Mars. Journal of Geophysical Research, 100, 5553–63.CrossRefGoogle Scholar
Freyberger, S. G., Ahlbrandt, T. S., and Andrews, S. (1979). Origin, sedimentary features and significance of low-angle eolian “sand sheet” deposits, Great Sand Dunes National Monument and vicinity, Colorado. Journal of Sedimentary Petrology, 49, 733–46.CrossRefGoogle Scholar
Golombek, M. P., Edgett, K. S., and Rice, J. W. (eds.) (1995). Mars Pathfinder landing site workshop II: Characteristics of the Ares Vallis region and field trips in the channeled scabland, Washington. Lunar and Planetary Institute Technical Report 95–01, Part 1 and Part 2.Google Scholar
Golombek, M. P.et al. (1999). Overview of the Mars Pathfinder mission: launch through landing, surface opertations, data sets, and science results. Journal of Geophysical Research – Planets, 104, 8523–54.CrossRefGoogle Scholar
Greeley, R. (1977). Aerial guide to the geology of the central and eastern Snake River Plain. Volcanism of the eastern Snake River Plain, Idaho: a comparative planetary geology guidebook, NASA Conference Report CR-154621, pp. 60–111 (St. Anthony dunes, pp. 101–8).
Greeley, R. and Iversen, J. D. (1985). Wind as a Geological Process on Earth, Mars, Venus and Titan. New York: Cambridge University Press.CrossRefGoogle Scholar
Greeley, R. and Iversen, J. D. (1987). Measurements of wind friction speeds over lava surfaces and assessment of sediment transport. Geophysical Research Letters, 14, 925–8.CrossRefGoogle Scholar
Greeley, R. and Williams, S. H. (1994). Dust deposits on Mars: the “parna” analog. Icarus, 110, 165–77.CrossRefGoogle Scholar
Greeley, R., Papson, R. P., and Spudis, P. D. (eds.) (1978). Aeolian Features of Southern California: A Comparative Planetary Geology Guidebook. US Government Printing Office, Stock No. 033–000–00706–0.Google Scholar
Greeley, R., Leach, R. N., Williams, S. H.et al. (1982). Rate of wind abrasion on Mars. Journal of Geophysical Research, 87, 10009–24.CrossRefGoogle Scholar
Greeley, R., Williams, S. H., White, B. R., Pollack, J. B., and Marshall, J. R. (1985). Wind abrasion on Earth and Mars. In Models in geomorphology, ed. Woldenburg, M. J.. Boston: Allen and Unwin, pp. 373–422.Google Scholar
Greeley, R., Lancaster, N., Lee, S., and Thomas, P. (1992). Martian aeolian processes, sediments, and features. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Mathews, M. S.. Tucson: University of Arizona Press, pp. 730–66.Google Scholar
Greeley, R., Bridges, N. T., Kuzmin, R. O., and Laity, J. E. (2002). Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sites on Mars. Journal of Geophysical Research, 107, 10129–50.CrossRefGoogle Scholar
Greeley, R., Arvidson, , Bell, J. F. R. III. et al. (2005). Martian variable features: new insight from the Mars Express Orbiter and the Mars Exploration Rover Spirit. Journal of Geophysical Research, 110, E06002, doi:10.1029/2005JE002403.CrossRefGoogle Scholar
Hack, J. T. (1941). Dunes of the western Navajo country. Geographical Journal, 31, 240–63.Google Scholar
Haff, P. K. and Presti, D. E. (1995). Barchan dunes of the Salton Sea region, California. In Desert Aeolian Processes, ed. Tchakerian, V. P.. New York: Chapman and Hall, pp. 153–77.Google Scholar
Hamblin, W. K. and Christiansen, E. H. (1998). The effects of the Pleistocene glaciation. In Earth's Dynamic Systems: A Textbook in Physical Geology, 8th edn. Upper Saddle River, NJ: Macmillan, pp. 370–80.Google Scholar
Havholm, K. G. and Kocurek, G. (1988). A preliminary study of the dynamics of a modern draa, Algodones, southeastern California, USA. Sedimentology, 35, 649–69.CrossRefGoogle Scholar
Head, J. W., Kreslavsky, M., Heisinger, H.et al. (1998). Oceans in the past history of Mars: tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data. Geophysical Research Letters, 25, 4401–4.CrossRefGoogle Scholar
Irwin, R. P., Maxwell, T. A., Howard, A. D., Craddock, R. A., and Leverington, D. W. (2002). A large paleolake basin at the head of Ma'adim Vallis, Mars. Science, 296, 2209–12.CrossRefGoogle ScholarPubMed
Janke, J. R. (2002). An analysis of the current stability of the dune field at Great Sand Dunes National Monument using temporal TM imagery (1984–1998). Remote Sensing of the Environment, 83, 488–97.CrossRefGoogle Scholar
Johnson, R. B. (1967). The Great Sand Dunes of southern Colorado. US Geological Survey Professional Paper 757-C, pp. 177–83.
Johnson, R. B. (1968). The Great Sand Dunes of southern Colorado. Rocky Mountain Geologist, 5, 23–39.Google Scholar
Kocurek, G. and Nielson, J. (1986). Climbing zibars of the Algodones. Sedimentary Geology, 48, 1–15.Google Scholar
Kocurek, G. and Lancaster, N. (1999). Aeolian sediment states: theory and Mojave Desert Kelso dunefield example. Sedimentology, 46, 505–16.CrossRefGoogle Scholar
Lancaster, N. (1992). Relationships between dune generations in the Gran Desierto, Mexico. Sedimentology, 39, 631–44.CrossRefGoogle Scholar
Lancaster, N. (1993). Development of Kelso Dunes, Mojave Desert, California. National Geographic Research and Explorations, 9, 444–59.Google Scholar
Lancaster, N. (1995a). Geomorphology of Desert Dunes. New York: Routledge.CrossRefGoogle Scholar
Lancaster, N. (1995b). Origin of the Gran Desierto sand sea, Sonora, Mexico: evidence from dune morphology and sedimentology. In Desert Aeolian Processes, ed. Tchakerian, V. P.. London: Chapman and Hall, pp. 11–35.Google Scholar
Lancaster, N. and Blount, G. (1990). Development of the Gran Desierto sand sea. Geology, 18, 724–8.Google Scholar
Lancaster, N. and Tchakerian, V. P. (1996). Geomorphology and sediments of sand ramps in the Mojave Desert. Geomorphology, 17, 151–66.CrossRefGoogle Scholar
Lancaster, N., Greeley, R., and Christensen, P. R. (1987). Dunes of the Gran Desierto sand sea, Sonora, Mexico. Earth Surface Processes and Landforms, 12, 277–88.CrossRefGoogle Scholar
Lindsay, J. F., Criswell, D. R., Criswell, T. L., and Criswell, B. S. (1976). Sound-producing dune and beach sands. Geological Society of America Bulletin, 87, 463–73.2.0.CO;2>CrossRefGoogle Scholar
Long, J. T. and Sharp, R. P. (1964). Barchan dune movement in Imperial Valley, California. Geological Society of America Bulletin, 75, 149–56.CrossRefGoogle Scholar
MacDonald, A. A. (1970). The northern Mojave's little Sahara. Mineral Information Service, 23, 3–6.Google Scholar
Maloney, J. F. (1982). Sand Mountain: the dune that booms. Nevada, 42, 8–11.Google Scholar
Malin, M. C. and Edgett, K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. Journal of Geophysical Research – Planets, 106, E10, 23429–570.CrossRefGoogle Scholar
Malin, M. C., Carr, M. H., Danielson, G. E.et al. (1998). Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science, 279, 1681–5.CrossRefGoogle ScholarPubMed
McCoy, F. M., Nokleberg, W. J., and Norris, R. M. (1967). Speculations on the origin of the Algodones dunes, California. Geological Society of America Bulletin, 78, 1039–44.CrossRefGoogle Scholar
McKee, E. D. (1966). Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas). Sedimentology, 7, 1–69.CrossRefGoogle Scholar
McKee, E. D. (1979). Introduction to a study of global sand seas. US Geological Survey Professional Paper 1052, pp. 1–19.
McKee, E. D. and Douglas, J. R. (1971). Growth and movement of dunes at White Sands National Monument. US Geological Survey Professional Paper 750-D, pp. 108–14.
McKee, E. D. and Moiola, R. J. (1975). Geometry and growth of the White Sands dune field, New Mexico. US Geological Survey Journal of Research, 3, 59–66.Google Scholar
Morrison, R. B. (1964). Lake Lahontan: geology of the southern Carson Desert, Nevada. US Geological Survey Professional Paper 401, p. 156.
Morrison, R. B. (1991). Quaternary stratigraphic, hydrologic, and climatic history of the Great Basin, with emphasis on lakes Lahontan, Bonneville, and Tecopa. In The Geology of North America, vol. K-2, ed. Morrison, R. B.. Boulder, CO: Geological Society of America, pp. 283–320.Google Scholar
Muhs, D. R. (2002). The concept of mineralogical maturity and the origin and evolution of dune fields in the western United States. In Proceedings of ICAR5/GCTE-SEN Joint Conference, ed. Lee, J. A. and Zobeck, T. M.. International Center for Arid and Semiarid Lands Studies, Texas Tech University, Lubbock, TX, Publication 02–2, pp. 408–9.Google Scholar
Muhs, D. R., Bush, C. A., Cowherd, S. D., and Mahan, S. (1995). Geomorphic and geochemical evidence for the source of sand in the Algodones dunes, Colorado Desert, Southeastern California. In Desert Aeolian Processes. ed. Tchakerian, V. P.. New York: Chapman and Hall, pp. 37–74.Google Scholar
Murbarger, N. (1950). The great White Sands. Natural History, 59, 228–35.Google Scholar
Murphy, J. D. (1973). The geology of Eagle Cove at Bruneau, Idaho, M.A. thesis, State University of New York at Buffalo.
Murphy, J. D. (1975). The geology of Bruneau Dunes State Park, Idaho. Geological Society of America Abstracts with Program, 7, 633 (abstract).Google Scholar
Murphy, J. D. and Greeley, R. (1972). Sand dunes at Eagle Cove (Bruneau), Idaho: possible analogs to Martian aeolian features. Eos, Transactions of the American Geophysical Union, 53, 1037 (abstract).Google Scholar
Mutch, T. A., Arvidson, R. E., Binder, A. B., Guinness, E. A., and Morris, E. C. (1977). The geology of the Viking Lander 2 site. Journal of Geophysical Research, 82, 4452–67.CrossRefGoogle Scholar
Nickling, W. G., McKenna Neuman, C., and Lancaster, N. (2002). Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada. Sedimentology, 49, 191–209.CrossRefGoogle Scholar
Nielson, J. and Kocurek, G. (1987). Surface processes, deposits, and development of star dunes: Dumont dune field, California. Geological Society of America Bulletin, 99, 177–86.2.0.CO;2>CrossRefGoogle Scholar
Norris, R. M. (1966). Barchan dunes of Imperial Valley, California. Journal of Geology, 74, 292–306.CrossRefGoogle Scholar
Norris, R. M. and Norris, K. S. (1961). Algodones dunes of southeastern California. Geological Society of America Bulletin, 72, 605–20.CrossRefGoogle Scholar
Orr, E. L. and Orr, W. N. (2000). Geology of Oregon, 5th edn. Dubuque, IA: Kendall/Hunt Publishing Company.Google Scholar
Parker, T. J., Saunders, R. S., and Schneeberger, D. M. (1989). Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary. Icarus, 82, 111–45.CrossRefGoogle Scholar
Pavlik, B. M. (1980). Patterns of water potential and photosynthesis of desert dune plants, Eureka Valley, California. Oecologia, 46, 147–54.CrossRefGoogle ScholarPubMed
Pease, P. P. and Tchakerian, V. P. (2003). Geochemistry of sediments from Quaternary sand ramps in the southeastern Mojave Desert, California. Quaternary International, 104, 19–29.CrossRefGoogle Scholar
Pye, K. and Tsoar, J. (1990). Aeolian Sand and Sand Dunes. London: Unwin Hyman.CrossRefGoogle Scholar
Ramsey, M. S., Christensen, P. R., Lancaster, N., and Howard, D. A. (1999). Identification of sand sources and transport pathways at the Kelso Dunes, California using thermal infrared remote sensing. Geological Society of America Bulletin, 111, 646–62.2.3.CO;2>CrossRefGoogle Scholar
Rempel, P. (1936). The crescentic sand dunes of the Salton Sea and their relation to vegetation. Ecology, 17, 347–58.CrossRefGoogle Scholar
Rendell, H. M. and Sheffer, N. L. (1996). Luminescence dating of sand ramps in the eastern Mojave Desert. Geomorphology, 17, 187–97.CrossRefGoogle Scholar
Ruff, S. W. and Christensen, P. R. (2002). Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. Journal of Geophysical Research – Planets, 107, E12, doi: 10.1029/2001JE001580.CrossRefGoogle Scholar
Russell, I. C. (1885). Geological history of Lake Lahontan, a Quaternary lake of northeastern Nevada. U.S. Geological Survey Monograph 11.Google Scholar
Schenk, C. J. and Fryberger, S. C. (1988). Early diagenesis of eolian dune sand and interdune sands at White Sands, New Mexico. Sedimentary Geology, 55, 109–20.CrossRefGoogle Scholar
Scott, D. H. and Tanaka, K. L. (1986). Geologic map of the western equatorial region of Mars. US Geological Survey Miscellaneous Investigations Series map I-1802-A, scale 1:15, 000, 000.Google Scholar
Sharp, R. P. (1966). Kelso dunes, Mojave Desert, California. Geological Society of America Bulletin, 77, 1045–74.CrossRefGoogle Scholar
Sharp, R. P. (1978). The Kelso dune complex. In Aeolian Features of Southern California: A Comparative Planetary Geology Guidebook, ed. Greeley, R., Womer, M. B., Papson, R. P., and Spudis, P. D.. US Government Printing Office, pp. 54–63.Google Scholar
Sharp, R. P. (1979). Intradune flats of the Algodones chain, Imperial Valley, California. Geological Society of America Bulletin, 90, 908–16.2.0.CO;2>CrossRefGoogle Scholar
Simpson, E. L. and Loope, D. B. (1985). Amalgamated interdune deposits, White Sands, New Mexico. Journal of Sedimentary Petrology, 55, 361–5.Google Scholar
Smith, D. E., Zuber, M. T., Soloman, S. C.et al. (1999). The global topography of Mars and implications for surface evolution. Science, 284, 1495–503.CrossRefGoogle ScholarPubMed
Smith, R. S. U. (1975). Eolian transport of sand on actively accreting slip face of a sand dune northwest of Winnemucca, Nevada. Geological Society of America Abstracts with Program, 9, 502 (abstract).Google Scholar
Smith, R. S. U. (1978). Guide to selected features of aeolian geomorphology in the Algodones dune chain, Imperial county, California. In Aeolian Features of Southern California: A Comparative Planetary Geology Guidebook, ed. Greeley, R., Womer, M. B., Papson, R. P., and Spudis, P. D.. US Government Printing Office, pp. 74–98.Google Scholar
Smith, R. S. U. (1982). Sand dunes in the North American deserts. In Reference Handbook of the Deserts of North America, ed. Bender, G. L.. Westport, CT: Greenwood Press, pp. 481–524.Google Scholar
Smith, R. S. U. (1984). Aeolian geomorphology of the Devil's Playground, Kelso Dunes and Silurian Valley, California. In Surficial Geology of the Eastern Mojave Desert, ed. Dohnenwend, J. C.. Boulder, CO: Geological Society of America, pp. 162–73.Google Scholar
Spaulding, W. G. (1990). Late Quaternary vegetation and climate of the Mojave Desert: the last Glacial Maximum to the present. In Packrat Middens: The Last 40,000 Years of Biotic Change, ed. Betancourt, J. L., VanDevender, T. R., and Martin, P. S.. Tucson: University of Arizona Press, pp. 166–99.Google Scholar
Stokes, S. and Breed, C. S. (1993). A chronostratigraphic re-evaluation of the Tusayan Dunes, Moenkopi Plateau and Ward Terrace, northeastern Arizona. In The Dynamics and Environmental Context of Aeolian Sedimentary Systems, ed. Pye, K.. London: Geological Society, pp. 75–90.Google Scholar
Swadley, W. C. and Carr, W. J. (1987). Geologic map of the quaternary and tertiary deposits of the Big Dune quadrangle, Nye county, Nevada, and Inyo county, California. US Geological Survey Miscellaneous Investigations Series I-1767, scale 1:24,000.Google Scholar
Sweet, M. L., Nielson, J., Havholm, K., and Farrelly, J. (1988). Algodones dune field of southern California: case history of a migrating modern dune field. Sedimentology, 35, 939–52.CrossRefGoogle Scholar
Tchakarian, V. P. (1991). Late Quaternary aeolian geomorphology of the Dale Lake sand sheet, southern Mojave Desert, California. Physical Geography, 12, 347–69.Google Scholar
Tchakerian, V. P. (ed.)(1995). Desert Aeolian Processes. New York: Chapman and Hall.Google Scholar
Tchakerian, V. P. (1997). North America. In Arid Zone Geomorphology, 2nd edn, ed. Thomas, D. S. G.. New York: John Wiley & Sons, pp. 523–41.Google Scholar
Theilig, E., Womer, M., and Papson, R. (1978). Geological field guide to the Salton Trough. In Aeolian Features of Southern California: A Comparative Planetary Geology Guidebook, ed. Greeley, R., Womer, M. B., Papson, R. P., and Spudis, P. D.. US Government Printing Office, pp. 100–59 (Salton Sea barchans are on pp. 119–24).Google Scholar
Thomas, D. S. G. (ed.)(1997). Arid Zone Geomorphology, 2nd edn. New York: John Wiley & Sons.Google Scholar
Trexler, D. T. and Melhorn, W. N. (1986). Singing, and booming sand dunes of California and Nevada. California Geology, 39, 147–52.Google Scholar
Tsoar, H., Greeley, R., and Peterfreund, A. R. (1979). Mars: the north polar sand sea and related wind patterns. Journal of Geophysical Research, 84, 8167–80.CrossRefGoogle Scholar
US Geological Survey (1982). Zapata Ranch quadrangle, Colorado, 7.5 minute series (topographic) map, scale 1:24,000.
Kamp, P. C. (1973). Holocene continental sedimentation in the Salton basin, California: a reconnaissance. Geological Society of America Bulletin, 84, 827–48.2.0.CO;2>CrossRefGoogle Scholar
Wegemann, C. H. (1939). Great Sand Dunes of Colorado. Mines Magazine, 29, 445–8.Google Scholar
Williams, K. K., Greeley, R., and Zimbelman, J. R. (2003). Using overlapping MOC images to search for dune movement and to measure dune heights. Lunar and Planetary Science XXIV. Houston: Lunar and Planetary Institute, Abstract 1639.Google Scholar
Williams, S. H., Zimbelman, J. R., and Ward, A. W. (2002). Large ripples on Earth and Mars. Lunar and Planetary Science XXIII. Houston: Lunar and Planetary Institute, Abstract 1508.Google Scholar
Wilson, S. A., Zimbelman, J. R., and Williams, S. H. (2003). Large aeolian ripples: extrapolations from Earth to Mars. Lunar and Planetary Science XXIV. Houston: Lunar and Planetary Institute, Abstract 1862.Google Scholar
Zimbelman, J. R. (2000). Non-active dunes in the Acheron Fossae region of Mars between the Viking and Mars Global Surveyor eras. Geophysical Research Letters, 27, 1069–72.CrossRefGoogle Scholar
Zimbelman, J. R. and Williams, S. H. (2002). Geochemical indicators of separate sources for eolian sands in the eastern Mojave Desert, California, and western Arizona. Geological Society of America Bulletin, 114, 490–6.2.0.CO;2>CrossRefGoogle Scholar
Zimbelman, J. R. and Wilson, S. (2002). Ripples and dunes in the Syrtis Major region of Mars, as revealed in MOC images. Lunar and Planetary Science XXXIII. Houston: Lunar and Planetary Institute, Abstract 1514.Google Scholar
Zimbelman, J. R., Williams, S. H., and Tchakerian, V. P. (1995). Sand transport paths in the Mojave Desert, southwestern United States. In Desert Aeolian Processes, ed. Tchakerian, V. P.. New York: Chapman and Hall, pp. 101–29.Google Scholar
Zimbelman, J. R., Williams, S. H., Johnston, A. K., and Head, J. W. (2004). Lake shorelines: Earth analogs for hypothesized Martian coastal features. Lunar and Planetary Science XXXV. Houston: Lunar and Planetary Institute, Abstract 1683.Google Scholar
W1: Eolian sand, SW US http://geochange.er.usgs.gov/sw/impacts/geology/sand/swsand.html
W2: Mars Exploration Program http://mars.jpl.nasa.gov
W3: Algodones http://www.ca.blm.gov/elcentro/algodones.html
W4: Bristol/Palen http://www.shef.ac.uk/∼igcp413/pdf/abstracts_volume.pdf
W5: Cactus Plain http://azwww.az.blm.gov/rec/ECACTUS.HTM
W6: Kelso http://wrgis.wr.usgs.gov/docs/parks/mojave/kelso1.html
W7: Kelso http://www.blm.gov/nhp/Preservation/wilderness/kelsod.html
W8: Dumont http://www.ca.blm.gov/barstow/dumont.html
W9: Dumont http://www-wmc.wr.usgs.gov/home-esic/exhibit/dumont.html
W10: Eureka http://www.nature.nps.gov/nnl/Registry/USA_Map/States/California/nnl/ed
W11: Sand Mountain http://www.nv.blm.gov/carson/Recreation/Rec_SandMtn.html
W12: Little Sahara http://www.ut.blm.gov/recsite/little.html
W13: Little Sahara http://www.utah.com/schmerker/1999/little_sahara.html
W14: Coral Pink http://www.stateparks.utah.gov/park_pages/parkpage.php?id=cpsp
W15: Coral Pink http://www.utah.com/stateparks/coral_pink.html
W16: White Sands http://www2.nature.nps.gov/geology/parks/whsa
W17: White Sands http://www.nps.gov/whsa/index.html
W18: Great Sand Dunes http://www.nps.gov/grsa/index.html
W19: Killpecker http://www.wy.blm.gov/rsfo/rec/dunes.html
W20: St. Anthony http://www.id.blm.gov/spec_places/other_stant.html
W21: Bruneau http://www.idahoparks.org/parks/bruneaudunes.html
W22: Christmas Valley http://atv.prd.state.or.us/site_detail.php?UID=4
W23: Moses Lake http://www.tourgrantcounty.com/rec_offroad.asp
W24: MOC http://www.msss.com/mars_images/index.html
W25: MOC image http://www.msss.com/moc_gallery/e01_e06/images/E03/E0302016.html
W26: MOC image http://www.msss.com/moc_gallery/e01_e06/images/E02/E0202651.html
W27: MOC Press Rel. http://www.msss.com/mars_images/moc/E01_E06_sampler2002/nirgal
W28: MOLA http://ltpwww.gsfc.nasa.gov/tharsis/mola.html
W29: TES http://emma.la.asu.edu
W30: Mars Odyssey http://mars.jpl.nasa.gov/odyssey
W31: THEMIS http://themis.la.asu.edu
W32: MER http://marsrovers.jpl.nasa.gov
W33: MRO http://mars.jpl.nasa.gov/mro
W34: SRTM shaded relief image http://photojournal.jpl.nasa.gov/catalog/PIA03378
W1: Eolian sand, SW US http://geochange.er.usgs.gov/sw/impacts/geology/sand/swsand.html
W2: Mars Exploration Program http://mars.jpl.nasa.gov
W3: Algodones http://www.ca.blm.gov/elcentro/algodones.html
W4: Bristol/Palen http://www.shef.ac.uk/∼igcp413/pdf/abstracts_volume.pdf
W5: Cactus Plain http://azwww.az.blm.gov/rec/ECACTUS.HTM
W6: Kelso http://wrgis.wr.usgs.gov/docs/parks/mojave/kelso1.html
W7: Kelso http://www.blm.gov/nhp/Preservation/wilderness/kelsod.html
W8: Dumont http://www.ca.blm.gov/barstow/dumont.html
W9: Dumont http://www-wmc.wr.usgs.gov/home-esic/exhibit/dumont.html
W10: Eureka http://www.nature.nps.gov/nnl/Registry/USA_Map/States/California/nnl/ed
W11: Sand Mountain http://www.nv.blm.gov/carson/Recreation/Rec_SandMtn.html
W12: Little Sahara http://www.ut.blm.gov/recsite/little.html
W13: Little Sahara http://www.utah.com/schmerker/1999/little_sahara.html
W14: Coral Pink http://www.stateparks.utah.gov/park_pages/parkpage.php?id=cpsp
W15: Coral Pink http://www.utah.com/stateparks/coral_pink.html
W16: White Sands http://www2.nature.nps.gov/geology/parks/whsa
W17: White Sands http://www.nps.gov/whsa/index.html
W18: Great Sand Dunes http://www.nps.gov/grsa/index.html
W19: Killpecker http://www.wy.blm.gov/rsfo/rec/dunes.html
W20: St. Anthony http://www.id.blm.gov/spec_places/other_stant.html
W21: Bruneau http://www.idahoparks.org/parks/bruneaudunes.html
W22: Christmas Valley http://atv.prd.state.or.us/site_detail.php?UID=4
W23: Moses Lake http://www.tourgrantcounty.com/rec_offroad.asp
W24: MOC http://www.msss.com/mars_images/index.html
W25: MOC image http://www.msss.com/moc_gallery/e01_e06/images/E03/E0302016.html
W26: MOC image http://www.msss.com/moc_gallery/e01_e06/images/E02/E0202651.html
W27: MOC Press Rel. http://www.msss.com/mars_images/moc/E01_E06_sampler2002/nirgal
W28: MOLA http://ltpwww.gsfc.nasa.gov/tharsis/mola.html
W29: TES http://emma.la.asu.edu
W30: Mars Odyssey http://mars.jpl.nasa.gov/odyssey
W31: THEMIS http://themis.la.asu.edu
W32: MER http://marsrovers.jpl.nasa.gov
W33: MRO http://mars.jpl.nasa.gov/mro
W34: SRTM shaded relief image http://photojournal.jpl.nasa.gov/catalog/PIA03378

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×