Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T05:15:47.848Z Has data issue: false hasContentIssue false

11 - Siberian rivers and Martian outflow channels: an analogy

Published online by Cambridge University Press:  18 September 2009

François Costard
Affiliation:
UMR 8148 IDES, Université Paris-Sud
E. Gautier
Affiliation:
CNRS UMR 8591, Laboratoire de Géographie Physique, Meudon
D. Brunstein
Affiliation:
CNRS UMR 8591, Laboratoire de Géographie Physique, Meudon
Mary Chapman
Affiliation:
United States Geological Survey, Arizona
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Geology of Mars
Evidence from Earth-Based Analogs
, pp. 279 - 296
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre-Puente, J., Costard, F., and Posado-Cano, R. (1994). Contribution to the study of thermal erosion on Mars. Journal of Geophysical Research, 99 (E3), 5657–67.CrossRefGoogle Scholar
Anisimova, N. P., Nikitina, N. M., Piguzova, U. M., and Shepelyev, V. V. (1973). Water sources of Central Yakutia-Guidebook. In Proceedings, II International Conference on Permafrost. Yakutsk, URSS. Washington, DC: National Academy of Sciences, pp. 1–47.Google Scholar
Antonov, S. (1960). Delta reki Leny. Trudy Okeanographitcheskiy Comissyi. Ak. Nauk. SSSR, 6, 25–34.Google Scholar
Are, F. E. (1983). Thermal abrasion on coasts. In Proceedings, Fourth International Conference on Permafrost, Fairbanks, Alaska. Washington, DC: National Academy Press, pp. 24–8.Google Scholar
Baker, V. R. (1982). The Channels of Mars. Austin: University of Texas Press.Google Scholar
Barlow, N. G. and Bradley, T. L. (1990). Martian impact craters: correlations of ejecta and interior morphologies with diameter, latitude and terrain. Icarus, 87, 156–79.CrossRefGoogle Scholar
Betts, B. H. and Murray, B. C. (1994). Thermal studies of Martian channels and valleys using Termoskan data. Journal of Geophysical Research, 99, 1983–96.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Squyers, S. W.et al. (2002). Distribution of hydrogen in the near-surface of Mars: evidence for subsurface ice deposits. Science, 297, 81–5.CrossRefGoogle ScholarPubMed
Carr, M. H. (1979). Formation of Martian flood features by release of water from confined aquifer. Journal of Geophysical Research, 84, 2995–3007.CrossRefGoogle Scholar
Caveliev, B. A. (1958). Particularités des processus de fusion des glaces dans la couverture glaciaire et les roches gelées. Problemy Severa, 1, 149–55.Google Scholar
Chapman, M. G. (1994). Evidence, age, and thickness of a frozen paleolake in Utopia Planitia, Mars. Icarus, 109, 393–406.CrossRefGoogle Scholar
Christensen, P. R., Anderson, D. L.Chase, S. C.et al. (2003). Results from the Mars Global Surveyor Thermal Emission Spectrometer. Science, 200, 2056–60.CrossRefGoogle Scholar
Clifford, S. M. (1993). A model for the hydrologic and climatic behavior of water on Mars. Journal of Geophysical Research, 98, 10973–11016.CrossRefGoogle Scholar
Costard, F. (1989). The spatial distribution of volatiles in the Martian hydrolithosphere. Earth Moon Planets, 45, 265–90.CrossRefGoogle Scholar
Costard, F. and Baker, V. (2001). Thermokarst landforms and processes in Ares Vallis, Mars. Geomorphology, 37 (3–4), 289–301.CrossRefGoogle Scholar
Costard, F. and Kargel, J. (1995). Outwash plains and thermokarst on Mars. Icarus, 114, 93–112.CrossRefGoogle Scholar
Costard, F.Aguirre-Puente, J., Greeley, R., and Makhloufi, N. (1999). Martian fluvial-thermal erosion: laboratory simulation. Journal of Geophysical Research, 104 (E6), 14091–8.CrossRefGoogle Scholar
Costard, F., Dupeyrat, L., Gautier, E., and Carey-Gailhardis, E. (2003). Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena river (central Yakutia). Earth Surface Processes and Landforms, 28, 1349–59.CrossRefGoogle Scholar
Fanale, F. P., Salvail, J. R., Zent, A. P., and Postawko, S. E. (1986). Global distribution and migration of subsurface ice on Mars. Icarus, 67, 1–18.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L.et al. (2002). Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297, 75–8.CrossRefGoogle ScholarPubMed
French, H. M. (1988). The periglacial phenomena: ancient and modern. Journal of Quaternary Science, 3 (1), 110 pp.Google Scholar
Gautier, E. and Costard, F. (2000). Les systèmes fluviaux à chenaux anastomosés en milieu périglaciaire: la Léna et ses principaux affluents en Sibérie Centrale. Géographie Physique et Quaternaire, 54 (3), 327–42.CrossRefGoogle Scholar
Gautier, E., Brunstein, D., Costard, F., and Lodina, R. (2003). Fluvial dynamics in a deep permafrost zone: the case of the middle Lena River (Central Yakutia). In Proceedings of the 8th International Conference on Permafrost, Zurich, ed. Phillips, M.. Balkema, pp. 271–5.Google Scholar
Gordeev, V. V. and Sidorov, I. S. (1993). Concentrations of major elements and their outflow into the Laptev Sea by the Lena River. Marine Chemistry, 43, 33–45.CrossRefGoogle Scholar
Jahn, A. (1975). Problems of the Periglacial Zone. Warsaw: Panstwowe Wydawnictwo Naukowe, reprinted by National Technical Information Service, Springfield, VA 22161, as PB–248 901.Google Scholar
Jakosky, B. M., Mellon, M. T., Kieffer, H. H.et al. (2000). The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer. Journal of Geophysical Research, 105, (E4), 9643–52.CrossRefGoogle Scholar
Journaux, A. and Dresch, J. (1972). Phénomènes périglaciaires en Sibérie Orientale, définition d'une nouvelle province périglaciaire actuelle. Bulletin de l'Association des Géographes Français, 57–73.Google Scholar
Katasonov, E. M. and Solovie, P. A. (1969). Guide to trip in Central Iakoutia. In Palaeogeography and Periglacial Phenomena, International Symposium, Iakutsk.Google Scholar
Kieffer, H. H., Chase, S. C., Miner, E. D., Munch, G., and Neugebauer, G. (1973). Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft. Journal of Geophysical Research, 78, 4291–312.CrossRefGoogle Scholar
Knighton, A. D. (1999). Downstream variation in stream power. Geomorphology, 29 (3–4), 293–306.CrossRefGoogle Scholar
Knighton, A. D. and Nanson, G. C. (1993). Anastomosis and the continuum of channel pattern. Earth Surface Processes and Landforms, 18, 613–25.CrossRefGoogle Scholar
Leopold, L. B. and Wolman, M. G. (1957). Rivers channel patterns; braided, meandering and straight. US Geological Survey Professional Paper 282–B, pp. 39–85.
Lopatin, G. V. (1952). Nanosy rek SSSR (obrazovanie i perenos). Izvestiya Vsesoyuznogo Geograficheskogo Obshchestva, 14, 366 pp.Google Scholar
Lucchitta, B. K. (1982). Ice sculpture in the Martian outflow channels. Journal of Geophysical Research, 87, 9951–73.CrossRefGoogle Scholar
Lucchitta, B. K. (2001). Antarctic ice streams and outflow channels on Mars. Geophysical Research Letters, 28, 403–6.CrossRefGoogle Scholar
Lucchitta, B. K. and Ferguson, H. M. (1983). Chryse basin channels: low gradients and ponded flows. Journal of Geophysical Research, 88, A553–68.CrossRefGoogle Scholar
Lvovitch, M. I. (1971). The water balance of the continents of the world and the method of studying it. Moscow: Academy of Science USSR, Instute of Geography.
Makogon, Y. F., Holditch, S. A., and Makogon, T. Y. (2005). Gas hydrate production: 1. Russian field illustrates gas-hydrate production. Oil and Gas Journal, 103 (5), 43–7.Google Scholar
Nanson, G. C. and Knighton, A. D. (1996). Anabranching rivers: their cause, character and classification. Earth Surface Processes and Landforms, 21, 217–39.3.0.CO;2-U>CrossRefGoogle Scholar
Nowicki, S. A. and Christensen, P. R. (2001). The thermophysical properties of Ares Vallis from thermal emission spectrometer data. Abstracts of Papers Submitted to the 32nd Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, CD 32, Abstract 1931.Google Scholar
Péwé, T. L. (1991). Permafrost. In The heritage of engineering geology; The first hundred years, ed. Kiersch, G. A.. Geological Society of America, Centennial Special Volume 3, pp. 277–97.CrossRefGoogle Scholar
Schumm, S. A. (1977). The Fluvial System. New York: John Wiley & Sons.Google Scholar
Smith, D. G. (1986). Anastomosing river deposits sedimentation rates and basin susbsidence, Magdalena River, Northwestern Columbia, South America. Sedimentary Geology, 46, 177–96.CrossRefGoogle Scholar
Walker, H. J. (1983). E pluribus unum: small landforms and the Arctic landscape. In Mega-geomorphology; Conference of the British Geomorphological Research Group, ed. Gardner, R. and Scoging, H.. Oxford: Oxford University Press, pp. 39–55.Google Scholar
Walker, H. J. and Arnborg, L. (1983). Nature of the Colville River during the late winter and breakup periods, 1962. Geological Society of America Special Paper.
Wallace, D. and Sagan, C. (1979). Evaporation of ice in planetary atmospheres – ice covered rivers on Mars. Icarus, 39, 385–400.CrossRefGoogle Scholar
Yamskikh, A. F., Yamskikh, A. A., and Brown, A. G. (1999). Siberian-type Quaternary floodplain sedimentation: the example of the Yenisei river. In Fluvial Processes and Environmental change, ed. Brown, A. G. and Quine, T. A.. New York: John Wiley & Sons, pp. 241–52.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×