Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T00:39:06.810Z Has data issue: false hasContentIssue false

8 - New Insights in Far-Space Measurements

Large-Scale Structures and Processes in the Solar Wind and Terrestrial Magnetosphere

from Part II - Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Scientific results about space physics in the solar system and obtained from space missions are presented, concentrating on observations from the past decade. After giving the most exhaustive possible list of missions having journeyed in the solar system these past twenty years, the paper presents new insights gathered on the solar wind focusing in particular on results obtained with SOHO, STEREO, ACE and Wind. Then, new results are also presented regarding the terrestrial space environment focusing specifically on data gathered by Cluster, Polar, THEMIS, GEOTAIL and Double Star.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 98 - 112
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbo, L., Antonucci, E., Mikić, Z., Linker, J. A., Riley, P., Lonello, R. (2010), Characterization of the slow wind in the outer corona, Adv. Space Res., 46, 1400, doi: 10.1016/j.asr.2010.08.008.Google Scholar
Abbo, L., Ofman, L., Antiochos, S. K., Hansteen, V. H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R. and Wang, Y.-M. (2016), Slow solar wind: Observations and modeling, Space Science Reviews, 201, 55, doi: 10.1007/s11214-016-0264-1.Google Scholar
André, M., and Cully, C. M. (2012), Low-energy ions: A previously hidden solar system particle population, Geophys. Res. Lett., 39, L03101, doi: 10.1029/2011GL050242.CrossRefGoogle Scholar
Artemyev, A. V., Petrukovich, A. A., Nakamura, R. and Zelenyi, L. M. (2011), Cluster statistics of thin current sheets in the Earth magnetotail: Specifics of the dawn flank, proton temperature profiles and electrostatic effects, J. Geophys. Res., 116, A09233, doi: 10.1029/2011JA016801.Google Scholar
Chi, Y., et al. (2016), Statistical study of the interplanetary coronal mass ejections from 1995 to 2015, Sol. Phys., 291, 2419, doi: 10.1007/s11207-016-0971-5.CrossRefGoogle Scholar
Cnossen, I., Wiltberger, M. and Ouellette, J. E. (2012), The effects of seasonal and diurnal variations in the Earth’s magnetic dipole orientation on solar wind–magnetosphere–ionosphere coupling, J. Geophys. Res., 117, A11211, doi: 10.1029/2012JA017825.Google Scholar
Crooker, N. U. (1979), Dayside merging and cusp geometry, J. Geophys. Res., 84(A3), 951–9, doi: 10.1029/JA084iA03p00951.CrossRefGoogle Scholar
Dasso, S., Mandrini, C. H., Démoulin, P. and Luoni, M. L. (2006), A new model-independent method to compute magnetic helicity in magnetic clouds, A&A, 455, 349–59, doi: 10.1051/0004-6361:20064806.Google Scholar
Davies, J. A., Perry, C. H., Trines, R. M. G. M., Harrison, R. A., Lugaz, N., Möstl, C., Liu, Y. D. and Steed, K. (2013), Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry, Astrophys. J., 777(2), doi: 10.1088/0004-637X/777/2/167.CrossRefGoogle Scholar
Démoulin, P., Janvier, M. and Dasso, S. (2016), Magnetic flux and helicity of magnetic clouds, Sol. Phys., 291, 531, doi: 10.1007/s11207-015-0836-3.CrossRefGoogle Scholar
Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6(2), 748, doi: 10.1103/PhysRevLett.6.47.Google Scholar
Dungey, J. W. (1963), The structure of the exosphere or adventures in velocity space, in Geophysics: The Earth’s Environment, edited by Dewitt, C., Hieblot, J., and Lebeau, A., pp. 505–50, Gordon and Breach, New York.Google Scholar
Dunlop, M. W., Balogh, A., Glassmeier, K.-H. and Robert, P. (2002), Four-point Cluster application of magnetic field analysis tools: The Curlometer, J. Geophys. Res., 107, 1384, doi: 10.1029/2001JA005088.Google Scholar
Dušík, Š., Granko, G., Šafránková, J., Němeček, Z. and Jelínek, K. (2010), IMF cone angle control of the magnetopause location: Statistical study, Geophys. Res. Lett., 37, L19103, doi: 10.1029/2010GL044965.CrossRefGoogle Scholar
Echer, E., Tsurutani, B. T. and Gonzalez, W. D. (2013), Interplanetary origins of moderate (−100 nT < Dst ≤ −50 nT) geomagnetic storms during solar cycle 23 (1996–2008), J. Geophys. Res., 118, 385–92, doi: 10.1029/2012JA018086.Google Scholar
Fuselier, S. A., Trattner, K. J. and Petrinec, S. M. (2011), Antiparallel and component reconnection at the dayside magnetopause, J. Geophys. Res., 116, A10227, doi: 10.1029/2011JA016888.Google Scholar
Gonzalez, W.D., and Mozer, F. S. (1974). A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res., 79, doi: 10.1029/JA079i028p04186.Google Scholar
Good, S. W., and Forsyth, R. J. (2016), Interplanetary coronal mass ejections observed by MESSENGER and Venus Express, Sol. Phys., 291, 239, doi: 10.1007/s11207-015-0828-3.Google Scholar
Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P. and Michalek, G. (2014), Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications, Geophys. Res. Lett., 41, 2673–80, doi: 10.1002/2014GL059858.Google Scholar
Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S. and Yashiro, S. (2009), CME interactions with coronal holes and their interplanetary consequences, J. Geophys. Res., 114, A00A22, doi: 10.1029/2008JA013686.CrossRefGoogle Scholar
Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S. and Mäkelä, P. (2015), Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24, J. Geophys. Res., 120, 9221–45, doi: 10.1002/2015JA021446.Google Scholar
Gulisano, A. M., Démoulin, P., Dasso, S. and Rodriguez, L. (2012), Expansion of magnetic clouds in the outer heliosphere, A&A, 543, A107, doi: 10.1051/0004-6361/201118748.Google Scholar
Haaland, S., and Gjerloev, J. (2013), On the relation between asymmetries in the ring current and magnetopause current, J. Geophys. Res., 118, 75937604, doi: 10.1002/2013JA019345.CrossRefGoogle Scholar
Haaland, S., Reistad, J., Tenfjord, P., Gjerloev, J., Maes, L., DeKeyser, J., Maggiolo, R., Anekallu, C. and Dorville, N. (2014), Characteristics of the flank magnetopause: Cluster observations, J. Geophys. Res., 119, 9019–37, doi: 10.1002/2014JA020539.CrossRefGoogle Scholar
Hoilijoki, S., Souza, V. M., Walsh, B. M., Janhunen, P. and Palmroth, M. (2014), Magnetopause reconnection and energy conversion as influenced by the dipole tilt and the IMF Bx, J. Geophys. Res., 119, 4484–94, doi: 10.1002/2013JA019693.Google Scholar
Hwang, K.-J., Goldstein, M. L., Kuznetsova, M. M., Wang, Y., Viñas, A. F. and Sibeck, D. G. (2012), The first in situ observation of Kelvin–Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions, J. Geophys. Res., 117, A08233, doi: 10.1029/2011JA017256.Google Scholar
Hwang, K.‐J., Kuznetsova, M. M., Sahraoui, F., Goldstein, M. L., Lee, E. and Parks, G. K. (2011), Kelvin–Helmholtz waves under southward interplanetary magnetic field, J. Geophys. Res., 116, A08210, doi: 10.1029/2011JA016596.Google Scholar
Iju, T., Tokumaru, M. and Fujiki, K. (2013), Radial speed evolution of interplanetary coronal mass ejections during solar cycle 23, Sol. Phys., 288, 331, doi: 10.1007/s11207-013-0297-5.CrossRefGoogle Scholar
Isavnin, A., Vourlidas, A. and Kilpua, E. K. J. (2014), Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet, Sol. Phys., 289, 2141, doi: 10.1007/s11207-013-0468-4.Google Scholar
Janvier, M., Démoulin, P. and Dasso, S. (2013), Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation, A&A, 556, A50, doi: 10.1051/0004-6361/201321442.Google Scholar
Kilpua, E. K. J., Luhmann, J. G., Gosling, J., Li, Y., Elliott, H., Russell, C.T., Jian, L., Galvin, A. B., Larson, D., Schroeder, P., Simunac, K. and Petrie, G. (2009), Small solar wind transients and their connection to the large-scale coronal structure, Sol. Phys., 256, 327, doi: 10.1007/s11207-009-9366-1.CrossRefGoogle Scholar
Kilpua, E. K. J., Olspert, N., Grigorievskiy, A., Käpylä, M. J., Tanskanen, E. I., Miyahara, H., Kataoka, R., Pelt, J. and Liu, Y. D. (2015), Statistical study of strong and extreme geomagnetic disturbances and solar cycle characteristics, Astrophys. J., 806(2), doi: 10.1088/0004-637X/806/2/272.Google Scholar
Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J. and Yashiro, S. (2013), Propagation characteristics of CMEs associated with magnetic clouds and ejecta, Sol. Phys., 284, 7788, doi: 10.1007/s11207-013-0230-y.Google Scholar
Kitamura, N., et al. (2016), Shift of the magnetopause reconnection line to the winter hemisphere under southward IMF conditions: Geotail and MMS observations, Geophys. Res. Lett., 43, 5581–8, doi: 10.1002/2016GL069095.Google Scholar
Kliem, B., Török, T. and Thompson, W. T. (2012), A parametric study of erupting flux rope rotation: Modeling the ‘cartwheel CME’ on 9 April 2008, Sol. Phys., 281, 137, doi: 10.1007/s11207-012-9990-z.Google Scholar
Komar, C. M., Fermo, R. L. and Cassak, P. A. (2015), Comparative analysis of dayside magnetic reconnection models in global magnetosphere simulations, J. Geophys. Res., 120, 276–94, doi: 10.1002/2014JA020587.Google Scholar
Lavraud, B. and Borovsky, J. E. (2008), Altered solar wind–magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113, A00B08, doi: 10.1029/2008JA013192.Google Scholar
Lavraud, B., et al. (2013), Asymmetry of magnetosheath flows and magnetopause shape during low Alfvén Mach number solar wind, J. Geophys. Res., 118, 10891100, doi: 10.1002/jgra.50145.CrossRefGoogle Scholar
Lavraud, B., Ruffenach, A., Rouillard, A. P., Kajdic, P., Manchester, W. B. and Lugaz, N. (2014), Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection, J. Geophys. Res., 119, 2635, doi: 10.1002/2013JA019154.Google Scholar
Lee, D.-Y., Kim, H.-S., Ohtani, S. and Park, M. Y. (2012), Statistical characteristics of plasma flows associated with magnetic dipolarizations in the near-tail region of r < 12 RE, J. Geophys. Res., 117, A01207, doi: 10.1029/2011JA017246.Google Scholar
Lepping, R. C., Wu, C.-C., Berdichevsky, D.B. and Szabo, A. (2011), Magnetic clouds at/near the 2007–2009 solar minimum: Frequency of occurrence and some unusual properties, Sol. Phys., 274, 345, doi: 10.1007/s11207-010-9646-9.Google Scholar
Lin, D., Wang, C., Li, W., Tang, B., Guo, X. and Peng, Z. (2014), Properties of Kelvin–Helmholtz waves at the magnetopause under northward interplanetary magnetic field: Statistical study, J. Geophys. Res., 119, 7485–94, doi: 10.1002/2014JA020379.Google Scholar
Liu, Y. D., et al. (2013), On Sun-to-Earth propagation of coronal mass ejections, Astrophys. J., 769(1), doi: 10.1088/0004-637X/769/1/45.Google Scholar
Liu, Y. D., Yang, Z., Wang, R., Luhmann, J. G., Richardson, J. D. and Lugaz, N. (2014), Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: Formation of a complex ejecta and generation of a two-step geomagnetic storm, Astrophys. J. Lett., 793(2), doi: 10.1088/2041-8205/793/2/L41.Google Scholar
Lugaz, N., Farrugia, C. J., Davies, J. A., Möstl, C., Davis, C. J., Roussev, I. I. and Temmer, M. (2012), The deflection of the two interacting coronal mass ejections of 2010 May 23–24 as revealed by combined in situ measurements and heliospheric imaging, Astrophys. J., 759(1), doi: 10.1088/0004-637X/759/1/68.Google Scholar
Lynch, B. J., Antiochos, S. K., Li, Y., Luhmann, J. G. and DeVore, C. R. (2009), Rotation of coronal mass ejections during eruption, Astrophys. J., 697(2), doi: 10.1088/0004-637X/697/2/1918.Google Scholar
McComas, D. J., Elliott, H. A., Schwadron, N. A., Gosling, J. T., Skoug, R. M. and Goldstein, B. E. (2003), The three-dimensional solar wind around solar maximum, Geophys. Res. Lett., 30, 1517, doi: 10.1029/2003GL017136.Google Scholar
McComas, D. J., Angold, N., Elliott, H. A., Livadiotis, G., Schwadron, N. A., Skoug, R. M. and Smith, C. W., Weakest solar wind of the space age and the current ‘mini’ solar maximum (2013), Astrophys. J., 779(1), doi: 10.1088/0004-637X/779/1/2.Google Scholar
Marchaudon, A., Cerisier, J.-C., Bosqued, J.-M., Dunlop, M. W., Wild, J. A., Décréau, P. M., Förster, E., Fontaine, D. and Laakso, H. (2004), Transient plasma injections in the dayside magnetosphere: One-to-one correlated observations by Cluster and SuperDARN, Ann. Geophys., 22, 141–58, doi: 10.5194/angeo-22-141-2004.Google Scholar
Mitsakou, E., and Moussas, X. (2014), Statistical study of ICMEs and their sheaths during solar cycle 23 (1996–2008), Sol. Phys., 289, 3137, doi: 10.1007/s11207-014-0505-y.CrossRefGoogle Scholar
Möstl, C., et al. (2014), Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU, Astrophys. J., 787(2), doi: 10.1088/0004-637X/787/2/119.Google Scholar
Möstl, C., et al. (2015), Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars, Nat. Commun., 6(7135), doi: 10.1038/ncomms8135.Google Scholar
Möstl, C., Temmer, M., Rollett, T., Farrugia, C. J., Liu, Y., Veronig, A. M., Leitner, M., Galvin, A. B. and Biernat, H. K. (2010), STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010, Geophys. Res. Lett., 37, L24103, doi: 10.1029/2010GL045175.CrossRefGoogle Scholar
Nykyri, K., and Otto, A. (2001), Plasma transport at the magnetospheric boundary due to reconnection in Kelvin‐Helmholtz vortices, Geophys. Res. Lett., 28, 3565, doi: 10.1029/2001GL013239.Google Scholar
Owens, M. J., Cargill, P. J., Pagel, C., Siscoe, G. L. and Crooker, N. U. (2005), Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res., 110, A01105, doi: 10.1029/2004JA010814.CrossRefGoogle Scholar
Owens, M. J., Démoulin, P., Savani, N. P., Lavraud, B. and Ruffenach, A. (2012), Implications of non-cylindrical flux ropes for magnetic cloud reconstruction techniques and the interpretation of double flux rope events, Sol. Phys., 278, 435, doi: 10.1007/s11207-012-9939-2.Google Scholar
Palmroth, M., Fear, R. C. and Honkonen, I. (2012), Magnetopause energy transfer dependence on the interplanetary magnetic field and the Earth’s magnetic dipole axis orientation, Ann. Geophys., 30, 515–26, doi: 10.5194/angeo-30-515-2012.Google Scholar
Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664.CrossRefGoogle Scholar
Paularena, K. I., Richardson, J. D., Kolpak, M. A., Jackson, C. R. and Siscoe, G. L. (2001), A dawn–dusk density asymmetry in Earth’s magnetosheath, J. Geophys. Res., 106(A11), 2537725394, doi: 10.1029/2000JA000177.Google Scholar
Petrukovich, A., Artemyev, A., Vasko, I., Nakamura, R. and Zelenyi, L. (2015), Current sheets in the Earth magnetotail: Plasma and magnetic field structure with Cluster project observations, Space Sci. Rev., 188, 311–37, doi: 10.1007/s11214-014-0126-7.Google Scholar
Pi, G., Shue, J.-H., Grygorov, K., Li, H.-M., Němeček, Z., Šafránková, J., Yang, Y.-H. and Wang, K. (2017), Evolution of the magnetic field structure outside the magnetopause under radial IMF conditions, J. Geophys. Res., 122, 4051–63, doi: 10.1002/2015JA021809.Google Scholar
Rong, Z. J., Wan, W. X., Shen, C., Li, X., Dunlop, M. W., Petrukovich, A. A., Zhang, T. L. and Lucek, E. (2011), Statistical survey on the magnetic structure in magnetotail current sheets, J. Geophys. Res., 116, A09218, doi: 10.1029/2011JA016489.Google Scholar
Rouillard, A. P., et al. (2010a), Intermittent release of transients in the slow solar wind: 1. Remote sensing observations, J. Geophys. Res., 115, A04103, doi: 10.1029/2009JA014471.Google Scholar
Rouillard, A. P., et al. (2010b), Intermittent release of transients in the slow solar wind: 2. In situ evidence, J. Geophys. Res., 115, A04104, doi: 10.1029/2009JA014472.Google Scholar
Ruffenach, A., et al. (2015), Statistical study of magnetic cloud erosion by magnetic reconnection, J. Geophys. Res., 120, 4360, doi: 10.1002/2014JA020628.Google Scholar
Ruffenach, A., et al. (2012), Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 117, A09101, doi: 10.1029/2012JA017624.Google Scholar
Samsonov, A. A., Němeček, Z., Šafránková, J. and Jelínek, K. (2012), Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field?, J. Geophys. Res., 117, A05221, doi: 10.1029/2011JA017429.Google Scholar
Sanchez-Diaz, E., Rouillard, A. P., Lavraud, B., Segura, K., Tao, C., Pinto, R., Sheeley, N. R. Jr and Plotnikov, I. (2016), The very slow solar wind: Properties, origin and variability, J. Geophys. Res., 121, 2830–41, doi: 10.1002/2016JA022433.Google Scholar
Shen, C., Li, X., Dunlop, M., Liu, Z. X., Balogh, A., Baker, D. N., Hapgood, M. and Wang, X. (2003), Analyses on the geometrical structure of magnetic field in the current sheet based on Cluster measurements, J. Geophys. Res., 108(A5), 1168, doi: 10.1029/2002JA009612.Google Scholar
Sergeev, V. A., Angelopoulos, V. and Nakamura, R. (2012), Recent advances in understanding substorm dynamics, Geophys. Res. Lett., 39, L05101, doi: 10.1029/2012GL050859.Google Scholar
Sergeev, V., Runov, A., Baumjohann, W., Nakamura, R., Zhang, T. L., Balogh, A., Louarn, P., Sauvaud, J. and Reme, H. (2004), Orientation and propagation of current sheet oscillations, Geophys. Res. Lett., 31, 5807, doi: 10.1029/2003GL019346.Google Scholar
Suvorova, A. V., and Dmitriev, A. V. (2015), Magnetopause inflation under radial IMF: Comparison of models, Earth Space Sci., 2, 107–14, doi: 10.1002/2014EA000084.Google Scholar
Suvorova, A. V., Shue, J.‐H., Dmitriev, A. V., Sibeck, D. G., McFadden, J. P., Hasegawa, H., Ackerson, K., Jelínek, K., Šafránková, J. and Němeček, Z. (2010), Magnetopause expansions for quasi‐radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res., 115, A10216, doi: 10.1029/2010JA015404.Google Scholar
Taylor, M. G., et al. (2012), Spatial distribution of rolled up Kelvin–Helmholtz vortices at Earth’s dayside and flank magnetopause, Ann. Geophys., 30, 1025–35, doi: 10.5194/angeo-30-1025-2012.Google Scholar
Toledo-Redondo, S., André, M., Vaivads, A., Khotyaintsev, Yu. V., Lavraud, B., Graham, D. B., Divin, A. and Aunai, N. (2016), Cold ion heating at the dayside magnetopause during magnetic reconnection, Geophys. Res. Lett., 43, 5866, doi: 10.1002/2015GL067187.Google Scholar
Toledo-Redondo, S., Vaivads, A., André, M. and Khotyaintsev, Y. V. (2015), Modification of the Hall physics in magnetic reconnection due to cold ions at the Earth’s magnetopause, Geophys. Res. Lett., 42, 6146–54, doi: 10.1002/2015GL065129.Google Scholar
Trattner, K. J., Mulcock, J. S., Petrinec, S. M. and Fuselier, S. A. (2007), Probing the boundary between anti-parallel and component reconnection during southwards interplanetary magnetic field conditions, J. Geophys. Res., 112, A08210, doi: 10.1029/2007JA012270.Google Scholar
Trattner, K. J., Petrinec, S. M., Fuselier, S. A. and Phan, T. D. (2012), The location of reconnection at the magnetopause: Testing the maximum magnetic shear model with THEMIS observations, J. Geophys. Res., 117, A01201, doi: 10.1029/2011JA016959.Google Scholar
Turc, L., Escoubet, C. P., Fontaine, D., Kilpua, E. K. J. and Enestam, S. (2016), Cone angle control of the interaction of magnetic clouds with the Earth’s bow shock, Geophys. Res. Lett., 43, 4781–9, doi: 10.1002/2016GL068818.Google Scholar
Turc, L., Fontaine, D., Savoini, P. and Kilpua, E. K. J. (2014), Magnetic clouds’ structure in the magnetosheath as observed by Cluster and Geotail: four case studies, Ann. Geophys., 32, 1247–61, doi: 10.5194/angeo-32-1247-2014.Google Scholar
Turc, L., Fontaine, D., Savoini, P. and Modolo, R. (2015), 3D hybrid simulations of the interaction of a magnetic cloud with a bow shock, J. Geophys. Res., 120, 6133–51, doi: 10.1002/2015JA021318.Google Scholar
Vasko, I. Y., Artemyev, A. V., Petrukovich, A. A., Nakamura, R. and Zelenyi, L. M. (2014), The structure of strongly tilted current sheets in the Earth magnetotail, Ann. Geophys., 32, 133, doi: 10.5194/angeo-32-133-2014.Google Scholar
Vasko, I. Y., Petrukovich, A. A., Artemyev, A. V., Nakamura, R. and Zelenyi, L. M. (2015), Earth’s distant magnetotail current sheet near and beyond lunar orbit, J. Geophys. Res., 120, 8663–80, doi: 10.1002/2015JA021633.Google Scholar
Walsh, B. M., Phan, T. D., Sibeck, D. G. and Souza, V. M. (2014), The plasmaspheric plume and magnetopause reconnection, Geophys. Res. Lett., 41, 223–8, doi: 10.1002/2013GL058802.Google Scholar
Walsh, B. M., Sibeck, D. G., Nishimura, Y. and Angelopoulos, V. (2013), Statistical analysis of the plasmaspheric plume at the magnetopause, J. Geophys. Res., 118, 4844–51, doi: 10.1002/jgra.50458.Google Scholar
Walsh, B. M., Sibeck, D. G., Wang, Y. and Fairfield, D. H. (2012), Dawn–dusk asymmetries in the Earth’s magnetosheath, J. Geophys. Res., 117, A12211, doi: 10.1029/2012JA018240.CrossRefGoogle Scholar
Walsh, B. M., Thomas, E. G., Hwang, K.-J., Baker, J. B. H., Ruohoniemi, J. M. and Bonnell, J. W. (2015), Dense plasma and Kelvin–Helmholtz waves at Earth’s dayside magnetopause, J. Geophys. Res., 120, 5560–73, doi: 10.1002/2015JA021014.Google Scholar
Wang, S., Kistler, L. M., Mouikis, C. G., Liu, Y. and Genestreti, K. J. (2014), Hot magnetospheric O+ and cold ion behavior in magnetopause reconnection: Cluster observations, J. Geophys. Res., 119, 9601–23, doi: 10.1002/2014JA020402.Google Scholar
Wang, S., Kistler, L. M., Mouikis, C. G. and Petrinec, S. M. (2015), Dependence of the dayside magnetopause reconnection rate on local conditions, J. Geophys. Res., 120, 63866408, doi: 10.1002/2015JA021524.Google Scholar
Winchester, W., Kilpua, E. K. J., Liu, Y. D., Lugaz, N., Riley, P., Török, T. and Vršnak, B. (2017), The physical processes of CME/ICME evolution, Space Sci. Rev., 212, 1159, doi: 10.1007/s11214-017-0394-0.Google Scholar
Winslow, R. M., Lugaz, N., Philpott, L. C., Schwadron, N. A., Farrugia, C. J., Anderson, B. J. and Smith, C. W. (2015), Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury, J. Geophys. Res., 120, 6101–18, doi: 10.1002/2015JA021200.CrossRefGoogle Scholar
Wu, C.-C., and Lepping, R. P. (2007), Comparison of the characteristics of magnetic clouds and magnetic cloud-like structures for the events of 1995–2003, Sol. Phys., 242, 159, doi: 10.1007/s11207-007-0323-6.Google Scholar
Wu, C.-C., and Lepping, R. P. (2011), Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23, Sol. Phys., 269, 141, doi: 10.1007/s11207-010-9684-3.Google Scholar
Yan, G. Q., Mozer, F. S., Shen, C., Chen, T., Parks, G. K., Cai, C. L. and McFadden, J. P. (2014), Kelvin–Helmholtz vortices observed by THEMIS at the duskside of the magnetopause under southward interplanetary magnetic field, Geophys. Res. Lett., 41, 4427–34, doi: 10.1002/2014GL060589.Google Scholar
Yurchyshyn, V. (2008), Relationship between EIT posteruption arcades, coronal mass ejections, the coronal neutral line, and magnetic clouds, Astrophys. J. Lett., 675(1), doi: 10.1086/533413.Google Scholar
Zhang, T. L., Baumjohann, W., Nakamura, R., Balogh, A. and Glassmeier, K. (2002), A wavy twisted neutral sheet observed by CLUSTER, Geophys. Res. Lett., 29, 1899, doi: 10.1029/2002GL015544.Google Scholar
Zhu, C. B., Zhang, H., Ge, Y. S., Pu, Z. Y., Liu, W. L., Wan, W. X., Liu, L. B., Chen, Y. D., Le, H. J. and Wang, Y. F. (2015), Dipole tilt angle effect on magnetic reconnection locations on the magnetopause, J. Geophys. Res., 120, 5344–54, doi: 10.1002/2015JA020989.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×