Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T01:30:33.698Z Has data issue: false hasContentIssue false

Embedding properties in direct products

Published online by Cambridge University Press:  07 May 2010

B. Brewster
Affiliation:
Department of Mathematical Sciences, Binghamton University-SUNY, Binghamton, NY 13902–6000, U.S.A.
A. Martínez-Pastor
Affiliation:
Escuela Técnica Superior de Informática Aplicada, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain
M. D. Pérez-Ramos
Affiliation:
Departament d'Álgebra, Universitat de València, C/ Doctor Moliner 50, 46100 Burjassot (València), Spain
C. M. Campbell
Affiliation:
University of St Andrews, Scotland
M. R. Quick
Affiliation:
University of St Andrews, Scotland
E. F. Robertson
Affiliation:
University of St Andrews, Scotland
G. C. Smith
Affiliation:
University of Bath
Get access

Summary

Introduction

This paper is a survey article containing an up-to-date account of recent achievements regarding embedding properties in direct products of groups. In the last years, several authors are carrying out a systematic study with the aim of understanding how subgroups with various embedding properties can be detected and characterized in the subgroup lattice of a direct product of two groups in terms of the subgroup lattices of the two groups.

Unless otherwise stated all groups considered in this paper are finite.

Direct products are maybe the easiest way to construct new groups from given ones and in spite of the simplicity of this construction, their structures are sometimes surprising.

The subgroup structure of direct products is well-known by a classical result due to Goursat. In this paper G1 × G2 = {(g1, g2) | giGi, i = 1, 2} will always denote the direct product of the groups G1 and G2 and πi will denote the canonical projection πi : G1 × G2Gi, for i = 1, 2. For a subgroup U of G1 × G2:

  • πi (U) = UGj ∩ Gi, {i, j} = {1, 2},

  • U ∩ Gi ⊴ πi (U), for i = 1, 2.

Goursat's theorem states that, apart from the direct product of subgroups of the direct factors, only ‘diagonal’ subgroups appear in a direct product.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Embedding properties in direct products
    • By B. Brewster, Department of Mathematical Sciences, Binghamton University-SUNY, Binghamton, NY 13902–6000, U.S.A., A. Martínez-Pastor, Escuela Técnica Superior de Informática Aplicada, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain, M. D. Pérez-Ramos, Departament d'Álgebra, Universitat de València, C/ Doctor Moliner 50, 46100 Burjassot (València), Spain
  • Edited by C. M. Campbell, University of St Andrews, Scotland, M. R. Quick, University of St Andrews, Scotland, E. F. Robertson, University of St Andrews, Scotland, G. C. Smith, University of Bath
  • Book: Groups St Andrews 2005
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721212.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Embedding properties in direct products
    • By B. Brewster, Department of Mathematical Sciences, Binghamton University-SUNY, Binghamton, NY 13902–6000, U.S.A., A. Martínez-Pastor, Escuela Técnica Superior de Informática Aplicada, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain, M. D. Pérez-Ramos, Departament d'Álgebra, Universitat de València, C/ Doctor Moliner 50, 46100 Burjassot (València), Spain
  • Edited by C. M. Campbell, University of St Andrews, Scotland, M. R. Quick, University of St Andrews, Scotland, E. F. Robertson, University of St Andrews, Scotland, G. C. Smith, University of Bath
  • Book: Groups St Andrews 2005
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721212.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Embedding properties in direct products
    • By B. Brewster, Department of Mathematical Sciences, Binghamton University-SUNY, Binghamton, NY 13902–6000, U.S.A., A. Martínez-Pastor, Escuela Técnica Superior de Informática Aplicada, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain, M. D. Pérez-Ramos, Departament d'Álgebra, Universitat de València, C/ Doctor Moliner 50, 46100 Burjassot (València), Spain
  • Edited by C. M. Campbell, University of St Andrews, Scotland, M. R. Quick, University of St Andrews, Scotland, E. F. Robertson, University of St Andrews, Scotland, G. C. Smith, University of Bath
  • Book: Groups St Andrews 2005
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721212.017
Available formats
×