Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T04:16:49.248Z Has data issue: false hasContentIssue false

Radical locally finite T-groups

Published online by Cambridge University Press:  07 May 2010

A. Ballester-Bolinches
Affiliation:
Departament d'Álgebra, Universitat de Valéncia, c/ Doctor Moliner 50, 46100 Burjassot (Valencia), Spain
H. Heineken
Affiliation:
Mathematisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Tatiana Pedraza
Affiliation:
ETS de Informática Aplicada, Departamento de Matemática Aplicada-IMPA, Universidad Politécnica de Valencia, 46022 Valencia, Spain
C. M. Campbell
Affiliation:
University of St Andrews, Scotland
M. R. Quick
Affiliation:
University of St Andrews, Scotland
E. F. Robertson
Affiliation:
University of St Andrews, Scotland
G. C. Smith
Affiliation:
University of Bath
Get access

Summary

Introduction

A group G is said to be a T-group if every subnormal subgroup of G is normal in G, that is, if normality is a transitive relation in G. The study of this class of groups begins with the publication of a paper of Dedekind in 1896. He characterizes the finite groups in which every subgroup is normal. These groups, called Dedekind groups, are obvious examples of T-groups. The extension of Dedekind's result to infinite groups was proved by Baer in 1933.

Theorem (Dedekind, Baer)All the subgroups of a group G are normal if and only if G is abelian or the direct product of a quaternion group of order 8, an elementary abelian 2-group and an abelian group with all its elements of odd order.

In 1942, E. Best and O. Taussky [5] prove that every finite group with cyclic Sylow subgroups is a T-group. Later G. Zacher characterized soluble finite Tgroups by means of Sylow towers properties (see [12]). However, the decisive result about the structure of T-groups in the finite soluble universe was obtained by Gaschütz in 1957 ([8]).

Theorem (Gaschütz)Let G be a finite soluble group. Then G is a T-group if and only if it has an abelian normal Hall subgroup L of odd order such that G/L is a Dedekind group and the elements of G induce power automorphisms in L.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Radical locally finite T-groups
    • By A. Ballester-Bolinches, Departament d'Álgebra, Universitat de Valéncia, c/ Doctor Moliner 50, 46100 Burjassot (Valencia), Spain, H. Heineken, Mathematisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany, Tatiana Pedraza, ETS de Informática Aplicada, Departamento de Matemática Aplicada-IMPA, Universidad Politécnica de Valencia, 46022 Valencia, Spain
  • Edited by C. M. Campbell, University of St Andrews, Scotland, M. R. Quick, University of St Andrews, Scotland, E. F. Robertson, University of St Andrews, Scotland, G. C. Smith, University of Bath
  • Book: Groups St Andrews 2005
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721212.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Radical locally finite T-groups
    • By A. Ballester-Bolinches, Departament d'Álgebra, Universitat de Valéncia, c/ Doctor Moliner 50, 46100 Burjassot (Valencia), Spain, H. Heineken, Mathematisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany, Tatiana Pedraza, ETS de Informática Aplicada, Departamento de Matemática Aplicada-IMPA, Universidad Politécnica de Valencia, 46022 Valencia, Spain
  • Edited by C. M. Campbell, University of St Andrews, Scotland, M. R. Quick, University of St Andrews, Scotland, E. F. Robertson, University of St Andrews, Scotland, G. C. Smith, University of Bath
  • Book: Groups St Andrews 2005
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721212.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Radical locally finite T-groups
    • By A. Ballester-Bolinches, Departament d'Álgebra, Universitat de Valéncia, c/ Doctor Moliner 50, 46100 Burjassot (Valencia), Spain, H. Heineken, Mathematisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany, Tatiana Pedraza, ETS de Informática Aplicada, Departamento de Matemática Aplicada-IMPA, Universidad Politécnica de Valencia, 46022 Valencia, Spain
  • Edited by C. M. Campbell, University of St Andrews, Scotland, M. R. Quick, University of St Andrews, Scotland, E. F. Robertson, University of St Andrews, Scotland, G. C. Smith, University of Bath
  • Book: Groups St Andrews 2005
  • Online publication: 07 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721212.012
Available formats
×