Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T06:44:15.959Z Has data issue: false hasContentIssue false

2 - James Watson, Francis Crick, George Gamow, and the genetic code

Published online by Cambridge University Press:  15 August 2009

Get access

Summary

The evidence presented supports the belief that a nucleic acid of the desoxyribose type is the fundamental unit of the transforming principle of Pneumococcus Type III.

Avery et al. Journal Experimental Medicine79, 137–159 (1943)

The phosphate-sugar backbone of our model is completely regular, but any sequence of the pairs of bases may fit into the structure. It follows that in a long molecule many different permutations are possible, and it therefore seems likely that the precise sequence of the bases is the code which carries the genetical information. If the actual order of the bases on one of the pair of chains were given, one could write down the exact order on the other one. Thus one chain is, as it were, the complement of the other, and it is this feature which suggests how the deooxyribosenucleic acid might duplicate itself.

Watson and Crick (1953b, pp. 964–5)

In a communication in Nature of May 30, p 964, J. D. Watson and F. H. C. Crick showed that the molecule of deoxyribosenucleic acid, which can be considered as a chromosome fibre, consists of two parallel chains formed by only four different kinds of nucleotides. These are either (1) adenine, or (2) thymine, or (3) guanine, or (4) cytosine with sugar and phosphate molecules attached to them. Thus the hereditary properties of any given organism could be characterized by a long number written in a four-digital system. On the other hand, the enzymes (proteins), the composition of which must be completely determined by the deoxyribosenucleic acid molecule, are long peptide chains formed by about twenty different kinds of amino-acids, and can be considered as long ‘words’ based on a 20-letter alphabet. […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×