Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Introduction
- 2 Algebras and Coalgebras
- 3 Finitary Iteration
- 4 Finitary Set Functors
- 5 Finitary Iteration in Enriched Settings
- 6 Transfinite Iteration
- 7 Terminal Coalgebras as Algebras, Initial Algebras as Coalgebras
- 8 Well-Founded Coalgebras
- 9 State Minimality and Well-Pointed Coalgebras
- 10 Fixed Points Determined by Finite Behaviour
- 11 Sufficient Conditions for Initial Algebras and Terminal Coalgebras
- 12 Liftings and Extensions from Set
- 13 Interaction between Initial Algebras and Terminal Coalgebras
- 14 Derived Functors
- 15 Special Topics
- Appendix A Functors with Initial Algebras or Terminal Coalgebras
- Appendix B A Primer on Fixed Points in Ordered and Metric Structures
- Appendix C Set Functors
- References
- List of Categories
- Index
8 - Well-Founded Coalgebras
Published online by Cambridge University Press: 30 January 2025
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Introduction
- 2 Algebras and Coalgebras
- 3 Finitary Iteration
- 4 Finitary Set Functors
- 5 Finitary Iteration in Enriched Settings
- 6 Transfinite Iteration
- 7 Terminal Coalgebras as Algebras, Initial Algebras as Coalgebras
- 8 Well-Founded Coalgebras
- 9 State Minimality and Well-Pointed Coalgebras
- 10 Fixed Points Determined by Finite Behaviour
- 11 Sufficient Conditions for Initial Algebras and Terminal Coalgebras
- 12 Liftings and Extensions from Set
- 13 Interaction between Initial Algebras and Terminal Coalgebras
- 14 Derived Functors
- 15 Special Topics
- Appendix A Functors with Initial Algebras or Terminal Coalgebras
- Appendix B A Primer on Fixed Points in Ordered and Metric Structures
- Appendix C Set Functors
- References
- List of Categories
- Index
Summary
Well-founded coalgebras generalize well-foundedness for graphs, and they capture the induction principle for well-founded orders on an abstract level. Taylor’s General Recursion Theorem shows that, under hypotheses, every well-founded coalgebra is parametrically recursive. We give a new proof of this result, and we show that it holds for all set functors, and for all endofunctors preserving monomorphisms on a complete and well-powered category with smooth monomorphisms. The converse of the theorem holds for set functors preserving inverse images. We provide an iterative construction of the well-founded part of a given coalgebra: It is carried by the least fixed point of Jacobs’ next-time operator.
Keywords
- Type
- Chapter
- Information
- Initial Algebras and Terminal CoalgebrasThe Theory of Fixed Points of Functors, pp. 253 - 292Publisher: Cambridge University PressPrint publication year: 2025