Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T15:03:37.378Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  24 April 2020

Carl Posy
Affiliation:
Hebrew University of Jerusalem
Ofra Rechter
Affiliation:
Tel-Aviv University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, Robert (1994): Leibniz: Determinist, Theist, Idealist. Oxford: Oxford University Press.Google Scholar
Adickes, Erich (1895): Kant-Studien. Kiel: Lipsius & Tischer.Google Scholar
Albers, Donald J., Alexanderson, Gerald L. and Reid, Constance (eds.) (1990): More Mathematical People: Contemporary Conversations. New York: Harcourt Brace Jovanovich.Google Scholar
Allison, Henry E. (1968): Kant’s Transcendental Idealism. New Haven: Yale University Press.Google Scholar
Allison, Henry E. (1973): The Kant–Eberhard Controversy. Baltimore: Johns Hopkins University Press.Google Scholar
Altmann, Alexander (1969): Moses Mendelssohns Frühschriften zur Metaphysik. Tübingen: Mohr.Google Scholar
Andersen, Svend (1983): Ideal und Singularität: Über die Funktion des Gottesbegriffes in Kants theoretischer Philosophie. Berlin: de Gruyter.Google Scholar
Anderson, Lanier (2001): “Synthesis, Cognitive Normativity, and the Meaning of Kant’s Question ‘How Are Synthetic Cognitions A Priori Possible?’,” European Journal of Philosophy 9, 275305.Google Scholar
Anderson, Lanier (2004): “It Adds Up After All: Kant’s Philosophy of Arithmetic in Light of the Traditional Logic,” Philosophy and Phenomenological Research 69, 501540.Google Scholar
Anderson, Lanier (2005): “The Wolffian Paradigm and Its Discontents: Kant’s Containment Definition of Analyticity in Historical Context,” Archiv für Geschichte der Philosophie 87, 2274.Google Scholar
Anderson, Lanier (2015): The Poverty of Conceptual Truth: Kant’s Analytic/Synthetic Distinction and the Limits of Metaphysics. Oxford: Oxford University Press.Google Scholar
Arnauld, Antoine and Nicole, Pierre (1996): Logic or the Art of Thinking. Translated and edited by Buroker, Jill Vance. Cambridge: Cambridge University Press.Google Scholar
Ashworth, E. J. (1974): Language and Logic in the Post-medieval Period. Dordrecht: Reidel.Google Scholar
Bacin, Stefano, Ferrarin, Alfredo, La Rocca, Claudio, and Ruffing, Margit (eds.) (2013): Kant und die Philosophie in weltbürgerlicher Absicht. Akten des XI. Internationalen Kant-Kongresses Pisa 2010 (2 vols.). Berlin: de Gruyter.Google Scholar
Baumgarten, Alexander Gottlieb (1757) [Metaphysica]: Metaphysica (4th ed.). Halle: Hemmerde. Reprinted in AA15 and AA17.Google Scholar
Baumgarten, Alexander Gottlieb (1761) [Logica]: Acroasis logica. Halle: Hemmerde. Reprinted in Wolff (GW, 3:5).Google Scholar
Baumgarten, Alexander Gottlieb (2009) [Aesthetica]: Ästhetik (2 vols.). Translated and edited by Mirbach, Dagmar. Hamburg: Felix Meiner. Originally published as Aesthetica (1750, 1758).Google Scholar
Beck, Lewis White (1955/1956): “Can Synthetic Be Made Analytic?” in Gram, (ed.) (1967), 228–246.Google Scholar
Beiser, Frederick C. (1987): The Fate of Reason. Cambridge, MA: Harvard University Press.Google Scholar
Beiser, Frederick C. (2009): German Idealism. Cambridge, MA: Harvard University Press.Google Scholar
Bennett, Jonathan (1966): Kant’s Analytic. Cambridge: Cambridge University Press.Google Scholar
Bennett, Jonathan (1974): Kant’s Dialectic. Cambridge: Cambridge University Press.Google Scholar
Bergmann, S. H. (1927): HaPhilosophia shell Immanuel Kant. Jerusalem: Magnes.Google Scholar
Bernays, Paul (1930–1931): “Die Philosophie der Mathematik und die Hilbertsche Beweistheorie,” Blätter für deutsche Philosophie 4, 326367. Reprinted in Bernays (1976). Translated in Mancosu (1998), 234–265.Google Scholar
Bernays, Paul (1976): Abhandlungen zur Philosophie der Mathematik. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
Beth, Evert W. (1953/1954): “Kants Einteilung der Urteile in analytische und synthetische,” Algemeen Nederlandsch Tijdschrift voor Wijsbegeerte en Psychologie 46, 253264.Google Scholar
Beth, Evert W. (1956/1957): “Über Lockes ‘allgemeines Dreieck’,” Kant-Studien 48, 361380.Google Scholar
Beth, Evert W. (1957): La Crise de la Raison et la Logique. Louvain: E. Nauwelaerts.Google Scholar
Beth, Evert W. (1959): The Foundations of Mathematics. Amsterdam: North-Holland.Google Scholar
Beth, Evert W. (1965): Mathematical Thought: An Introduction to the Philosophy of Mathematics. Dordrecht: Reidel.CrossRefGoogle Scholar
Brittan, Gordon (1978): Kant’s Theory of Science. Princeton, NJ: Princeton University Press.Google Scholar
Brittan, Gordon (1986): “Kant’s Two Grand Hypotheses,” in Butts, Robert. E. (ed.): Kant’s Philosophy of Physical Science. Dordrecht: Reidel, 6194.CrossRefGoogle Scholar
Brittan, Gordon (1989): “Constructibility and the World-Picture,” in Funke, Gerhard and Seebohm, Thomas. M. (eds.): Proceedings of the Sixth International Kant Congress. Washington, DC: University Press of America, 6582.Google Scholar
Brittan, Gordon (1995): “The Continuity of Matter: Notes on Friedman,” in Robinson, (ed.) (1995), 611–618.Google Scholar
Brittan, Gordon (2006): “Kant’s Philosophy of Mathematics,” in Bird, Graham (ed.): A Companion to Kant. Oxford: Blackwell Publishing, 222235.Google Scholar
Broad, C. D. (1978): Kant, An Introduction. Edited by Lewy, C. Cambridge: Cambridge University Press.Google Scholar
Brouwer, L. E. J. (1913): “Intuitionism and Formalism,” Bulletin of the American Mathematical Society 20, 8196. Reprinted in Brouwer (1975), 123–138.Google Scholar
Brouwer, L. E. J. (1952): “Historical Background, Principles and Methods of Intuitionism,” South African Journal of Science 49, 139146. Reprinted in Brouwer (1975), 508–515.Google Scholar
Brouwer, L. E. J. (1975): Collected Works, Volume 1: Philosophy and Foundations of Mathematics. Edited by Heyting, A. Amsterdam: North Holland.Google Scholar
Brouwer, L. E. J. (2000): “Intuitionism and Formalism,” Bull. American Mathematical Society 37:1, 5564. Translated by Dresden, Arnold. Originally published as “Intuïtionisme en formalisme,” Wiskundig tijdschrift, 9 (1913).Google Scholar
Callanan, John (2014): “Mendelssohn and Kant on Mathematics and Evidence,” Kant Yearbook 6, 121.Google Scholar
Cantor, Georg (1883): Grundlagen einer allgeneinen Mannigfaltigkeitslehre, ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Leipzig: Teubner.Google Scholar
Cantor, Georg (1895/1897): “Beiträge zur Begründung der transfiniten Mengenlehre,” Mathematische Annalen 46: 481512, 49: 207–246. Translated as (1915): Contributions to the Founding of the Theory of Transfinite Numbers by Jourdain, Philip E. B. New York: Dover.Google Scholar
Capozzi, Mirella (1973): “J. Hintikka e il metodo della matematica in Kant,” Il Pensiero 18, 232–67.Google Scholar
Capozzi, Mirella (1982): “Sillogismi e proposizioni singolari: Due aspetti della critica di Wolff a Leibniz,” in Buzzetti, Dino and Ferriani, Maurizio (eds.): La grammatica del pensiero: Logica, linguaggio e conoscenza nell’età dell’Illuminismo. Bologna: il Mulino, 103150.Google Scholar
Capozzi, Mirella (1987): “Kant on Logic, Language and Thought,” in Buzzetti, Dino and Ferriani, Maurizio (eds.): Speculative Grammar, Universal Grammar, and Philosophical Analysis of Language. Amsterdam: John Benjamins, 97147.Google Scholar
Capozzi, Mirella (2002): Kant e la logica, Vol. 1. Napoli: Bibliopolis. Reprint (2013).Google Scholar
Capozzi, Mirella (2009): “La teoria kantiana dei concetti e il problema dei nomi propri,” Dianoia 14, 119146.Google Scholar
Capozzi, Mirella (2011): “Philosophy and Writing: The Philosophical Book according to Kant,” Quaestio 11, 307350.Google Scholar
Capozzi, Mirella (2013): “The Quantity of Judgments and the Categories of Quantity: A Problem in the Metaphysical Deduction,” in Bacin, , Ferrarin, , La Rocca, , and Ruffing, (eds.) (2013), 2:65–75.Google Scholar
Capozzi, Mirella and Roncaglia, Gino (2009): “Logic and Philosophy of Logic from Humanism to Kant,” in Haaparanta, Leila (ed.): The Development of Modern Logic. New York: Oxford University Press, 78158.Google Scholar
Carnap, Rudolf (1966): Philosophical Foundations of Physics. Edited by Gardner, Martin. New York: Basic Books.Google Scholar
Carson, Emily (1997): “Kant on Intuition in Geometry,” Canadian Journal of Philosophy 27, 489512.CrossRefGoogle Scholar
Carson, Emily (1999): “Kant on the Method of Mathematics,” Journal of the History of Philosophy 37, 629652.Google Scholar
Carson, Emily (2004): “Metaphysics, Mathematics, and the Distinction between the Sensible and Intelligible in Kant’s Inaugural Dissertation,” Journal of the History of Philosophy 42, 165194.CrossRefGoogle Scholar
Carson, Emily and Huber, Renate (eds.) (2006): Intuition and the Axiomatic Method. Dordrecht: Springer.Google Scholar
Cassirer, Ernst (1907): “Kant und die moderne Mathematik,” Kant-Studien 12, 140.Google Scholar
Cohen, Hermann (1871): Kant’s Theorie der Erfahrung. Berlin: Dümmler. 2nd ed. (1885) Berlin: Dümmler; 3rd ed. (1918) Berlin: Bruno Cassirer.Google Scholar
Couturat, Louis (1901): La logique de Leibniz. Paris: Alcan. Reprinted in 1961, Hildesheim: Georg Olms.Google Scholar
Couturat, Louis (1905): Les principes des mathématiques, avec un appendice sur la philosophie des mathématiques de Kant. Paris: Alcan.Google Scholar
Crossley, John N. and Dummett, Michael A. E. (eds.) (1965): Formal Systems and Recursive Functions: Proceedings of the Eighth Logic Colloquium, Oxford, July 1963. Amsterdam: North Holland.Google Scholar
Crusius, Christian A. (1745) [Entwurf]: Entwurf der notwendigen Vernunftwahrheiten. Reprinted in Werke, Vol. 2.Google Scholar
Crusius, Christian A. (1747) [Weg]: Weg zur Gewißheit u. Zuverlässigkeit der menschlichen Erkenntnis. Reprinted in Werke, Vol. 3.Google Scholar
Crusius, Christian A. (1964) [Werke]: Die philosophischen Hauptwerke (4 vols.). Edited by Tonelli, Giorgio. Hildesheim: Georg Olms.Google Scholar
Dedekind, Richard (1872): Stetigkeit und irrationale Zahlen. Braunschweig: Vieweg. Reprinted in Dedekind (1932). Translated in Dedekind (1963).Google Scholar
Dedekind, Richard (1888): Was sind und was sollen die Zahlen. Braunschweig: Vieweg (originally published as a separate booklet). Reprinted in Dedekind (1932). Translated in Dedekind (1963).Google Scholar
Dedekind, Richard (1932): Gesammelte Werke, Vol. 3. Edited by Fricke, R., Noether, E., and Ore, O. Braunschweig: Vieweg.Google Scholar
Dedekind, Richard (1963): Essays on the Theory of Numbers. Translated by Beman, W. W. New York: Dover.Google Scholar
De Risi, Vincenzo (2015): Leibniz on the Parallel Postulate and the Foundations of Geometry. Basel: Birkhäuser.Google Scholar
Descartes, René (1954): Geometry. Translated by Smith, D. E. and Latham, M. L. New York: Dover Books.Google Scholar
Descartes, René (1996) [AT]: Oeuvres de Descartes (12 vols.). Edited by Adam, Charles and Tannery, Paul. Paris: Vrin.Google Scholar
Detlefsen, Michael (2005): “Formalism,” in Shapiro, Stewart (ed.): The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, 236317.Google Scholar
Domski, Mary and Dickson, Michael (eds.) (2010): Discourse on a New Method: Reinvigorating the Marriage of History and Philosophy of Science. Chicago: Open Court.Google Scholar
Dunlop, Katherine (2009): “Why Euclid’s Geometry Brooked No Doubt: J. H. Lambert on Certainty and the Existence of Models,” Synthese 167, 3365.Google Scholar
Dunlop, Katherine (2012): “Kant and Strawson on the Content of Geometrical Concepts,” Noûs 46, 86126.Google Scholar
Dunlop, Katherine (2014): “Arbitrary Combination and the Use of Signs in Mathematics: Kant's 1763 Prize Essay and Its Wolffian background,” Canadian Journal of Philosophy 44, 658685.Google Scholar
Edwards, Charles H. (1979): The Historical Development of the Calculus. New York: Springer-Verlag.Google Scholar
Einarson, Benedict (1936): “On Certain Mathematical Terms in Aristotle’s Logic,” American Journal of Philology 57, 3344 and 151–172.Google Scholar
Engfer, H.-J. (1983): “Zur Bedeutung Wolffs für die Methoden-diskussion der deutschen Aufklärungsphilosophie: Analytische und synthetische Methode bei Wolff und beim vorkritischen Kant,” in Schneiders, Werner (ed.): Christian Wolff 1679–1754: Interpretationen zu seiner Philosophie und deren Wirkung. Hamburg: Felix Meiner, 4865.Google Scholar
Euclid, [Elements]: see Heath (1926).Google Scholar
Euler, Leonhard (1984): Elements of Algebra (5th ed.). Translated by Hewlett, John. New York: Springer-Verlag. Vollständige Anleitung zur Algebra (1770). Petersburg: Royal Academy of Sciences.Google Scholar
Ewald, William (1996): From Kant to Hilbert: A Source Book in the Foundations of Mathematics (2 vols.). Oxford: Clarendon Press.Google Scholar
Fichant, Michel (1997): “‘L’Espace est représenté comme une grandeur infinie donnée’: La radicalité de l’Esthétique,” Philosophie 56, 2048.Google Scholar
Fine, Kit (1985): Reasoning with Arbitrary Objects, Aristotelian Society Monograph Series, Vol. 3. Oxford: Basil BIackwell.Google Scholar
Flatt, C. C. (1802): Fragmentarische Bemerkungen gegen den Kantischen und Kiesewetterischen Grundriss der reinen allgemeinen Logik: Ein Beytrag zur Vervollkommnung dieser Wissenschaft. Tübingen: Heerbrandt. Reprinted in 1968, Bruxelles: Culture et Civilization.Google Scholar
Förster, Eckart (2000): Kant’s Final Synthesis. Cambridge, MA: Harvard University Press.Google Scholar
Franks, Paul (2005): All or Nothing. Cambridge, MA: Harvard University Press.Google Scholar
Frege, Gottlob (1879) [Bg]: Begriffsschrift: Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Louis Nebert. Translated by Bauer-Mengelberg, Stefan (1967) as: Begriffsschrift: A Formula Language, Modeled upon that of Arithmetic, for Pure Thought, in van Heijenoort, Jean (ed.) (1967): From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press.Google Scholar
Frege, Gottlob (1884) [GL]: Die Grundlagen der Arithmetik: Eine logisch mathematische Untersuchung über den Begriff der Zahl. Berlin: Georg Olms. Translated by Austin, J. L. (1961) as: The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number. Evanston: Northwestern University Press.Google Scholar
Frege, Gottlob (1892): “Über Sinn und Bedeutung,” Zeitschrift für Philosophie Und Philosophische Kritik 100, 2550. Translated by Black M. (1952) as: “On Sense and Reference,” in Geach, Peter and Black, Max (eds.): Translations from the Philosophical Writings of Gottlob Frege. Oxford: Blackwell, 56–78.Google Scholar
Frege, Gottlob (1918): “Der Gedanke: Eine logische Untersuchung,” Beiträge zur Philosophie des deutchen Idealiismus 1, 5877.Google Scholar
Frege, Gottlob (1979): “Logic in Mathematics.” Translated by Lond, P. and White, R. in Hermes, H., Kambartel, F., and Kaulbach, F. (eds.): Posthumous Writings. Oxford: Blackwell.Google Scholar
Friedman, Michael (1985): “Kant’s Theory of Geometry,” Philosophical Review 94, 455506. Reprinted in Friedman (1992), 55–95, and in Posy (ed.) (1992), 177–219.Google Scholar
Friedman, Michael (1990): “Kant on Concepts and Intuitions in the Mathematical Sciences,” Synthese 84, 213257. Reprinted in Friedman (1992), 96–135.Google Scholar
Friedman, Michael (1992): Kant and the Exact Sciences. Cambridge, MA: Harvard University Press.Google Scholar
Friedman, Michael (1995): “Matter and Material Substance in Kant’s Philosophy of Nature,” in Robinson, (ed.) (1995), 595–610.Google Scholar
Friedman, Michael (2000): “Geometry, Construction and Intuition in Kant and his Successors,” in Sher, and Tieszen, (eds.) (2000), 186–218.Google Scholar
Friedman, Michael (2010): “Synthetic History Reconsidered,” in Domski, and Dickson, (eds.) (2010), 571–814.Google Scholar
Friedman, Michael (2012a): “Kant on Geometry and Spatial Intuition,” Synthese 186, 231255.Google Scholar
Friedman, Michael (2012b): “Newton and Kant: Quantity of Matter in the Metaphysical Foundations of Natural Science,” Southern Journal of Philosophy 50, 482503.Google Scholar
Friedman, Michael (2012c): “The Prolegomena and Natural Science,” in Lyre, Holger and Schliemann, Oliver (eds.): Kants Prolegomena. Ein kooperativer Kommentar. Frankfurt: Klostermann, 299326.CrossRefGoogle Scholar
Friedman, Michael (2013): Kant’s Construction of Nature: A Reading of the Metaphysical Foundations of Natural Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Friedman, Michael (2015): “Kant on Geometry and Experience,” in De Risi, V. (ed.): Mathematizing Space: The Objects of Geometry from Antiquity to the Early Modern Age. Basel: Birkhäuser.Google Scholar
Garber, Daniel (2009): Leibniz: Body, Substance, Monad. Oxford: Oxford University Press.Google Scholar
Garber, Daniel and Longuenesse, Béatrice (eds.) (2008): Kant and the Early Moderns. Oxford: Oxford University Press.CrossRefGoogle Scholar
Gödel, Kurt (1990): Collected Works, Volume 2: Publications 1938–1974. Edited by Feferman, Solomon, Dawson, John W., Kleene, Stephen C., Moore, Gregory H., Solovay, Robert M., Heijenoort, Jean van. Oxford: Oxford University Press.Google Scholar
Gödel, Kurt (1995): Collected Works, Volume 3: Unpublished Essays and Lectures. Edited by Feferman, Solomon, Dawson, John W., Goldfarb, Warren, Parsons, Charles, Solovay, Robert M. Oxford: Oxford University Press.Google Scholar
Gram, Moltke (ed.) (1967): Kant: Disputed Questions. Chicago: Quadrangle.Google Scholar
Green, Ronald (1992): Kierkegaard and Kant: The Hidden Debt. New York: State University of New York Press.Google Scholar
Guyer, Paul (1987): Kant and the Claims of Knowledge. Cambridge: Cambridge University Press.Google Scholar
Guyer, Paul (1991): “Mendelssohn and Kant,” Philosophical Topics 19, 119152. Cited as reprinted in Guyer (2000): Kant on Freedom, Law, and Happiness. Cambridge: Cambridge University Press, 17–59.Google Scholar
Guyer, Paul (ed.) (1992): Cambridge Companion to Kant. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hallett, Michael (2006): “Gödel, Realism and Mathematical Intuition,” in Carson, and Huber, (eds.) (2006), 113–132.Google Scholar
Hanna, Robert (2001): Kant and the Foundations of Analytic Philosophy. Oxford: Oxford University Press.Google Scholar
Hartz, Glenn and Cover, J. A. (1988): “Space and Time in the Leibnizian Metaphysic,” Noûs 22, 493519.Google Scholar
Sir Heath, Thomas L. (1926): The Thirteen Books of Euclid’s Elements, translated from the text of Heiberg, with introduction and commentary (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
Sir Heath, Thomas L. (1949): Mathematics in Aristotle. Oxford: Clarendon Press.Google Scholar
Hegel, G. W. F. (1802): “Glauben und Wissen, oder die Relfexionsphilosophie der Subjektivität in der Vollständigkeit ihrer Formen als Kantische, Jacobische und Fichtesche Philosophie,” Kritisches Journal der Philosophie 2, 1188. Reprinted in 1962, Hamburg: Meiner. Translated and edited by Cerf, W. and Harris, H. S. (1977) as: Faith and Knowledge. Albany, NY: State University of New York Press. Also in Werke, Vol. 2.Google Scholar
Heidegger, Martin (1927): Sein und Zeit. Tübingen: Max Niemeyer. Translated by Macquarrie, John and Robinson, Edward (1962) as: Being and Time. New York: Harper and Row.Google Scholar
Heidegger, Martin (1929): Kant und das Problem der Metaphysik. Bonn: Friedrich Cohen, Translated by Taft, R. (1997) as: Kant and the Problem of Metaphysics. Bloomington: Indiana University Press.Google Scholar
Heidegger, Martin (1962): Die Frage nach dem Ding. Zu Kants Lehre von den transzendentalen Grundsätzen. Tübingen: Max Niemeyer. Translated by Barton, W. B. Jr. and Deutsch, V. (1967) as: What is a Thing. Chicago: Henry Regnery.Google Scholar
Heidegger, Martin (1977): Phänomenologische Interpretation von Kants Kritik der reinen Vernunft. Frankfurt: Klostermann. Translated by Emad, Parvis and Maly, Kenneth as: Phenomenological Interpretation of Kant’s Critique of Pure Reason. Bloomington: Indiana University Press.Google Scholar
Heis, Jeremy (2014): “Kant (vs. Leibniz, Wolff and Lambert) on Real Definitions in Geometry,” Canadian Journal of Philosophy 44, 605630.Google Scholar
Henrich, Dieter (1955): “Über die Einheit der Subjektivität,” Philosophische Rundschau 3, 2869.Google Scholar
Henrich, Dieter (1968–1969): “The Proof-Structure of Kant’s Transcendental Deduction,” Review of Metaphysics 22, 640659.Google Scholar
Hilbert, David and Cohen-Vossen, Stefan (1952): Geometry and Imagination. New York: Chelsea.Google Scholar
Hintikka, Jaakko (1959): “Kantin oppi matematiikasta: tutkimuksia sen peruskäsitteistä, rakenteesta ja esikuvista,” Ajatus 22, 558.Google Scholar
Hintikka, Jaakko (1965a): “Kant and the Tradition of Analysis” in Crossley, and Dummett, (eds.) (1965), 48–91. Reprinted in Hintikka (1973), 199–221.Google Scholar
Hintikka, Jaakko (1965b): “Kant’s ‘New Method of Thought’ and His Theory of Mathematics,” Ajatus 27, 3747. Reprinted in Hintikka (1974), 126–134.Google Scholar
Hintikka, Jaakko (1967): “Kant on the Mathematical Method,” The Monist 51, 352375. Reprinted in Posy (ed.) (1992), 21–42.Google Scholar
Hintikka, Jaakko (1969a): “On Kant’s Notion of Intuition (Anschauung),” in Penelhum, Terence and Macintosh, J. J. (eds.): The First Critique. Reflections on Kant’s Critique of Pure Reason. Belmont, CA: Waldsworth, 3853.Google Scholar
Hintikka, Jaakko (1969b): “Kant on the Mathematical Method,” in Beck, Lewis White (ed.) Kant Studies Today. La Salle, IL: Open Court, 117140.Google Scholar
Hintikka, Jaakko (1972):“Kantian Intuitions,” Inquiry 15, 341345.Google Scholar
Hintikka, Jaakko (1973): Logic, Language-Games and Information: Kantian Themes in the Philosophy of Logic. Oxford: Clarendon Press.Google Scholar
Hintikka, Jaakko (1974): Knowledge and the Known. Dordrecht: Kluwer.Google Scholar
Hintikka, Jaakko (1982): “Kant’s Theory of Mathematics Revisited,” Philosophical Topics 12, 201215.CrossRefGoogle Scholar
Hintikka, Jaakko (1984): “Kant’s Transcendental Method and His Theory of Mathematics,” Topoi 3, 99108. Reprinted in Posy (ed.) (1992), 341–360.CrossRefGoogle Scholar
Hintikka, Jaakko (1998): Language, Truth and Logic in Mathematics. Selected Papers, Vol. 3. Dordrecht: Kluwer.Google Scholar
Hintikka, Jaakko (2012): “Method of Analysis: A Paradigm of Mathematical Reasoning?History and Philosophy of Logic 33, 4967.Google Scholar
Hintikka, Jaakko and Hintikka, Merril B. (1989): The Logic of Epistemology and the Epistemology of Logic. Dordrecht: Kluwer.Google Scholar
Hobbes, Thomas (1656): Six Lessons to the Professors of the Mathematics, One of Geometry, the Other of Astronomy. London: J. M. for Andrew Crook. Reprinted in (1845): The English Works of Thomas Hobbes of Malmesbury, Vol. 7. Edited by Molesworth, Sir William, London: Longman, Brown, Green, and Longmans, 181–356.Google Scholar
Hoffmann, A. F. (1729): Gedanken über Hn. Christian Wolffens Logic oder sogenannte Philosophiam rationalem. Leipzig: J. S. Hensio.Google Scholar
Hoffmann, A. F. (1737): Vernunft-Lehre, darinnen die Kennzeichen des Wahren und Falschen aus den Gesetzen des menschlichen Verstandes hergeleitet werden. Hildesheim: Georg Olms. Reprinted in Wolff (GW, 3:99).Google Scholar
Hogan, Desmond (2013): “Metaphysical Motives of Kant’s Analytic–Synthetic Distinction,” Journal of the History of Philosophy 51, 267308.Google Scholar
Horstmann, Rolf P. (1976): “Space as Intuition and Geometry,” Ratio 18, 1730.Google Scholar
Howell, Robert (1973): “Intuition, Synthesis, and Individuation in the Critique of Pure Reason,” Noûs 7, 207232.Google Scholar
Hume, David (1739): Treatise of Human Nature (3 vols.). Cited as reprinted in Selby-Bigge, Lewis Amherst (ed.) (1888). Oxford: Clarendon Press.Google Scholar
Johnson-Laird, Philip N. (1983): Mental Models. Cambridge, MA: Harvard University Press.Google Scholar
Jakob, L. H. (1791): Grundriß der allgemeinen Logik und kritische Anfangsgründe zu einer allgemeinen Metaphysik (2nd ed.). Halle: Hemmerde und Schwetschke.Google Scholar
Karsten, Wenceslaus Johann Gustav (1767) [Lehrbegriff]: Lehrbegriff der gesamten Mathematik. Die erste Theil. Greifswald: Röse.Google Scholar
Karsten, Wenceslaus Johann Gustav (1760) [Mathesis]: Mathesis theoretica elementaris. Greifswald: Röse.Google Scholar
Kästner, Abraham Gotthelf (1758) [Anfangsgründe]: Anfangsgründe der Mathematik, Vol. 1. Göttingen: Vandenhoek.Google Scholar
Kästner, Abraham Gotthelf (1764): Anfangsgründe der Arithmetik, Geometrie ebenen und sphärischen Trigonometrie, und Perspectiv. Göttingen: Vandenhoeck.Google Scholar
Kästner, Abraham Gotthelf (1790a): “Was heißt in Euclids Geometrie möglich?Philosophisches Magazin 2, 391402.Google Scholar
Kästner, Abraham Gotthelf (1790b): “Über den mathematischen Begriff der Raums,” Philosophisches Magazin 2, 403419.Google Scholar
Kästner, Abraham Gotthelf (1790c): “Über die geometrischen Axiome,” Philosophisches Magazin 2, 420430.Google Scholar
Kauppi, Raili (1960): Über die Leibnizsche Logik mit besonderer Berücksichtigung des Problems der Intension und der Extension. Helsinki: Acta Philosophica Fennica.Google Scholar
Kemp-Smith, Norman (1918): A Commentary to Kant’s Critique of Pure ReasonLondon: Macmillan.Google Scholar
Kiesewetter, J. G. (1791) [Grundriß]: Grundriß einer reinen allgemeinen Logik, nach Kantischen Grundsätzen. Berlin: Lagarde.Google Scholar
Kiesewetter, J. G. (1797): Logik zum Gebrauch für Schulen. Berlin: F. T. Lagarde. 2nd ed. (1814) Leipzig: H. A. Köchly.Google Scholar
Kiesewetter, J. G. (1799) [Anfangsgründe]: Die ersten Anfangsgründe der reinen Mathematik. Berlin: Quien.Google Scholar
Kitcher, Philip (1975): “Kant and the Foundations of Mathematics,” The Philosophical Review, 84 (1): 2350. Reprinted in Posy ed. (1992), 109–131.Google Scholar
Klein, Felix (1939): Elementary Mathematics from an Advanced Standpoint. New York: Macmillan.Google Scholar
Klein, Jacob (1968): Greek Mathematical Thought and the Origin of Algebra. Cambridge, MA: Massachusetts Institute of Technology Press.Google Scholar
Kline, Morris (1972): Mathematical Thought from Ancient to Modern Times. Oxford: Oxford University Press.Google Scholar
Kneale, William and Kneale, Martha (1962): The Development of Logic. Oxford: Clarendon Press.Google Scholar
Knorr, Wilbur (1986): The Ancient Tradition of Geometric Problems. Boston: Birkhäuser.Google Scholar
Koriako, Darius (1999): Kants Philosophie der Mathematik. Hamburg: Felix Meiner.Google Scholar
Kripke, Saul (1980): Naming and Necessity. Cambridge, MA: Harvard University Press.Google Scholar
Lambert, Johann Heinrich (1764) [Organon]: Neues Organon, oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrtum und Schein (2 vols.). Leipzig: Wendler.Google Scholar
Lambert, Johann Heinrich (1771) [Architectonic]: Anlage zur Architectonic, Vol. 1. Riga: Hartknock.Google Scholar
Lambert, Johann Heinrich (1786) [Theorie]: “Theorie der Parallellinien,” in Engel, Friedrich and Stäckel, Paul (eds.) (1895): Die Theorie der Parallellinien von Euklid bis auf Gauss. Leipzig: Teubner, 152207.Google Scholar
Lambert, Johann Heinrich (1915) [Abhandlung]: “Abhandlung vom Criterium Veritatis,” Kant-Studien, Ergänzungsheft 36, 764. Partially translated as: “Treatise on the Criterion of Truth” in Watkins, Eric (2009): Kant’s Critique of Pure Reason: Background Source Materials. Cambridge: Cambridge University Press, 233–257.Google Scholar
Laywine, Alison (1998): “Problems and Postulates: Kant on Reason and Understanding,” Journal of the History of Philosophy 36, 279309.Google Scholar
Laywine, Alison (2010): “Kant and Lambert on Geometrical Postulates in the Reform of Metaphysics,” in Domski, and Dickson, (eds.) (2010), 113–133.Google Scholar
Lebesgue, Henri (1950): Leçons sur les constructions géométriques. Paris: Gauthier-Villars.Google Scholar
Leibniz, Gottfried Wilhelm (1849–63) [GM]: Mathematische Schriften (7 vols.). Edited by Gerhardt, K. I. Halle: Asher et Comp. Reprinted in 1963, Hildesheim: Georg Olms.Google Scholar
Leibniz, Gottfried Wilhelm (1875–1890) [G]: Die philosophischen Schriften (7 vols.). Edited by Gerhardt, K. I. Berlin: Weidmann. Reprinted in 1965, Hildesheim: Georg Olms.Google Scholar
Leibniz, Gottfried Wilhelm (1968) [General Investigation] General Investigation Concerning the Analysis of Concepts and Truth. Translated and evaluated by O’Briant, Walter H. University of Georgia Monographs, No. 17. Athens: University of Georgia Press.Google Scholar
Leibniz, Gottfried Wilhelm (1969) [L]: Philosophical Papers and Letters (2nd ed.). Translated and edited by Loemker, Leroy. Dordrecht: Reidel.Google Scholar
Leibniz, Gottfried Wilhelm (1989) [AG]: Philosophical Essays. Translated and edited by Ariew, Roger and Garber, Dan. Indianapolis: Hackett.Google Scholar
Leibniz, Gottfried Wilhelm (1996) [New Essays]: New Essays on Human Understanding. Translated by Remnant, Peter and Bennett, Jonathan. Cambridge: Cambridge University Press.Google Scholar
Locke, John (1979) [Essay]: An Essay Concerning Human Understanding. Edited by Nidditch, P. H. Oxford: Oxford University Press.Google Scholar
Longuenesse, Béatrice (1998a): Kant and the Capacity to Judge: Sensibility and Discursivity in the Transcendental Analytic of the Critique of Pure Reason. Translated by Wolfe, C. T. Princeton, NJ: Princeton University Press.Google Scholar
Longuenesse, Béatrice (1998b): “Synthèse et donation. Réponse à Michel Fichant,” Philosophie 60, 7991. Translated as “Synthesis and givenness,” in Longuenesse (2005): Kant on the Human Standpoint. Cambridge: Cambridge University Press, 64–78.Google Scholar
Lu-Adler, Huaping (2012): Kant’s Conception of Logical Extension and Its Implications. PhD diss., University of California, Davis.Google Scholar
Mancosu, Paolo (1996): Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. Oxford: Oxford University Press.Google Scholar
Mancosu, Paolo (1998): From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s. Oxford: Oxford University Press.Google Scholar
Mansion, Paul (1908): “Gauss contra Kant sur la géométrie non euclidienne,” Revue néo-scolastique 15, 441–53.Google Scholar
Martin, Gottfried (1934/1972): Arithmetik und Kombinatorik bei Kant. Berlin: de Gruyter. Translated by Wubnig, Judy (1985) as: Arithmetic and Combinatorics: Kant and His Contemporaries. Carbondale: Southern Illinois University Press.Google Scholar
Meier, G. F. (1752a): Vernunftlehre. Halle: Gebauer.Google Scholar
Meier, G. F. (1752b) [Auszug]: Auszug aus der Vernunftlehre. Halle: Gebauer. Reprinted in AA16.Google Scholar
Melnick, Arthur (1989): Space, Time, and Thought in Kant. Dordrecht: Kluwer.Google Scholar
Mendelssohn, Moses (1762): “Zweyhundert und achter Brief. Über die Fortsetzung des Versuchs vom Genie,” Briefe, die neueste Litteratur betreffend 13, 314.Google Scholar
Mendelssohn, Moses (1764): Abhandlung über die Evidenz in metaphysischen Wissenschaften. Berlin: Royal Academy of Sciences. Reprinted in 1786, Berlin: Haude und Spener. Translated as “On Evidence in Metaphysical Sciences,” in Mendelssohn (1997), 251–306.Google Scholar
Mendelssohn, Moses (1972): Gesammelte Schriften: Schriften zur Philosophie und Ästhetik II. Edited by Bamberger, Fritz and Strauss, Leo. Stuttgart: Friedrich Frommann.Google Scholar
Mendelssohn, Moses (1997): Philosophical Writings. Translated and edited by Dahlstrom, Daniel. Cambridge: Cambridge University Press.Google Scholar
Menzel, Alfred (1911): “Die Stellung der Mathematik in Kants vorkritischer Philosophie,” Kant-Studien 16, 139213.Google Scholar
Mueller, Ian (1981): Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. Cambridge, MA: Massachusetts Institute of Technology Press.Google Scholar
Normore, Calvin (1993): “The Necessity in Deduction: Cartesian Inference and its Medieval Background,” Synthese 96, 437454.Google Scholar
Newton, Isaac (1999): [Principia] The Principia: Mathematical Principles of Natural Philosophy. Translated and edited by Cohen, Bernard and Whitman, Anne, and assisted by Budenz, Julia. Berkeley: University of California Press.Google Scholar
Pariente, Jean-Claude (1985): L’analyse du langage à Port-Royal. Six études logico-grammaticales. Paris: Presses universitaires de France.Google Scholar
Parker, Matthew (2009): “Philosophical Method and Galileo’s Paradox of Infinity,” in van Kerkhove, Bart (ed.): New Perspectives on Mathematic Practices: Essays in Philosophy and History of Mathematics. Singapore: World Scientific, 76113.Google Scholar
Parsons, Charles (1964): “Infinity and Kant’s Conception of the ‘Possibility of Experience’,” Philosophical Review 73, 183197.Google Scholar
Parsons, Charles (1969): “Kant’s Philosophy of Arithmetic” in Morgenbesser, Sidney, Suppes, Patrick, and White, M. G. (eds.): Philosophy, Science and Method: Essays in Honor of Ernest Nagel. New York: St. Martins, 568594. Reprinted with postscript in Parsons (1983), 110–149, and in Posy (ed.) (1992), 43–79.Google Scholar
Parsons, Charles (1979–1980): “Mathematical Intuition,” Proceedings of the Aristotelian Society, New Series 80, 145–168.Google Scholar
Parsons, Charles (1983): Mathematics in Philosophy. Ithaca, NY: Cornell University Press.Google Scholar
Parsons, Charles (1984): “Arithmetic and the Categories,” Topoi 3, 109121. Reprinted with postscript in Posy (ed.) (1992), 135–158, and in Parsons (2012), 42–68.Google Scholar
Parsons, Charles (1992): “The Transcendental Aesthetic,” in Guyer, (ed.) (1992), 62–100.Google Scholar
Parsons, Charles (2008): Mathematical Thought and Its Objects. Cambridge: Cambridge University Press.Google Scholar
Parsons, Charles (2010): “Two Studies in the Reception of Kant’s Philosophy of Arithmetic,” in Domski, and Dickson, (eds.) (2010), 135–154. Reprinted in Parsons (2012), 80–99.Google Scholar
Parsons, Charles (2012): From Kant to Husserl: Selected Essays. Cambridge, MA: Harvard University Press.Google Scholar
Parsons, Charles (2016): “Reply to Feferman, Koellner, Tait, and Sieg,” Journal of Philosophy 113, 286307.Google Scholar
Paulsen, Friedrich (1875): Versuch einer Entwicklungsgeschichte der Kantischen Erkenntnistheorie. Leipzig: Fues.Google Scholar
Poincaré, Henri (1894): “Sur la nature du raisonnement mathématique,” Revue de métaphysique et de morale 2, 371384. Translated by Halsted, G. B. in Ewald (1996), 2:972–982.Google Scholar
Poincaré, Henri (1900): “Du rôle de l’intuition et de la logique en mathématiques,” in Compte rendu du Deuxiéme congrès international des mathématiciens tenu à Paris du 6 au 12 août 1900. Pais: Gauthier-Villars, 210–22. Translated by Halsted, G. B. in Ewald (1996), 2:1012–1020.Google Scholar
Poincaré, Henri (1905): “Les mathématiques et la logique I,” Revue de metaphysique et de morale 13, 815–35. Translated by Halsted, G. B. in Ewald (1996), 2:1021–1038.Google Scholar
Pollok, Konstantin (2008): “‘An Almost Single Inference’: Kant’s Deduction of the Categories Reconsidered,” Archiv für Geschichte der Philosophie 90, 323345.Google Scholar
Posy, Carl (1981): “The Language of Appearances and Things in Themselves,” Synthese 47, 313–52.Google Scholar
Posy, Carl (1982): “A Free IPC Is a Natural Logic: Strong Completeness for Some Intuitionistic Free Logics,” Topoi, 1, 3043. Reprinted in Lambert, Karel (ed.) (1991): Philosophical Applications of Free Logic. Oxford: Oxford University Press.Google Scholar
Posy, Carl (1984a): “Kant’s Mathematical Realism,” The Monist 66, 115134. Revised version in Posy (ed.) (1992), 293–313.Google Scholar
Posy, Carl (1984b): “Transcendental Idealism and Causality,” in Harper, William and Meerbote, Ralf (eds.): Kant on Causality, Freedom and Objectivity. Minnesota: University of Minnesota, 2041.Google Scholar
Posy, Carl (2000): “Immediacy and the Birth of Reference in Kant: The Case for Space,” in Sher, and Tieszen, (eds.) (2000), 155–185.Google Scholar
Posy, Carl (2008a): “Intuition and Infinity: A Kantian Theme with Echoes in the Foundations of Mathematics,” Royal Institute of Philosophy Supplement 63, 165193. Reprinted in Massimi, Michela (ed.) (2009): Kant and Philosophy of Science Today. Cambridge: Cambridge University Press, 165–194.Google Scholar
Posy, Carl (2008b): “Autonomy or Authenticity: Leibniz and Kant on Practical Rationality,” in Dascal, Marcelo (ed.): Leibniz, What Kind of Rationalist. Dordrecht: Springer, 293313.Google Scholar
Posy, Carl (2010): “Man Is the Measure: Kantian Thoughts on the Unities of Self and World,” IYYUN 59, 115141. Reprinted in Ifergan, Pini (ed.) (2011): The Philosopher in the Public Sphere: Essays for Yirmiyahu Yovel. Jerusalem: HaKibbutz HaMeuhad and Van Leer Jerusalem Institute.Google Scholar
Posy, Carl (2013): “Computability and Constructibility,” in Copeland, B. J., Posy, Carl, and Shagrir, Oron (eds.) (2013): Computability: Turing, Church, and Beyond. Cambridge, MA: Massachusetts Institute of Technology Press, 116151.Google Scholar
Posy, Carl (ed.) (1992): Kant’s Philosophy of Mathematics: Modern Essays. Dordrecht: Kluwer.Google Scholar
Putnam, Hilary (1975): “The Meaning of ‘Meaning’,” in Putnam, Hilary (1975): Mind, Language and Reality, Philosophical Papers, Vol. 2. Cambridge: Cambridge University Press, 215271.Google Scholar
Rechter, Ofra (1997): Syntheticity, Intuition and Symbolic Construction in Kant’s Philosophy of Arithmetic. PhD diss., Columbia University.Google Scholar
Rechter, Ofra (2006): “The View from 1763: Kant on the Arithmetical Method before Intuition,” in Carson, and Huber, (eds.) (2006), 21–46.Google Scholar
Rechter, Ofra (2010): “On Kant on Arithmetic, Time and Irrationals,” in Bacin, , Ferrarin, , La Rocca, , and Ruffing, (eds.) (2013), 1:209–222.Google Scholar
Reich, Klaus (1986): Die Vollständigkeit der kantischen Urteilstafel (3rd ed.). Hamburg: Meiner.Google Scholar
Reichenbach, Hans (1936): “Logical Empiricism in Germany and the Present State of Its Problems,” Journal of Philosophy 33, 141160.Google Scholar
Reichenbach, Hans (1959): “The Present State of the Discussion of Relativity,” in Modern Philosophy of Science: Selected Essays by Hans Reichenbach. Translated and edited by Reichenbach, Maria. London: Routledge & Kegan Paul, 145.Google Scholar
Reusch, J. P. (1741): Systema logicum antiquiorum atque recentiorum item propria praecepta exhibens (2nd ed.). Jenae: Croeker.Google Scholar
Robinson, Hoke (ed.) (1995): Proceedings of the Eighth International Kant Congress. Milwaukee: Marquette University Press.Google Scholar
Rosier-Catach, Irène (2014): “Les Médiévaux et Port-Royal sur l’analyse de la formule de la consécration eucharistique,” in Archaimbault, Sylvie Fournier, Jean-Marie, and Raby, Valérie (eds.): Penser l’histoire des savoirs linguistiques: Hommage à Sylvain Auroux. Lyon: ENS Éditions, 535555.Google Scholar
Russell, Bertrand (1897): An Essay on the Foundations of Geometry. Cambridge: Cambridge University Press.Google Scholar
Russell, Bertrand (1903): The Principles of Mathematics. Cambridge: Cambridge University Press. 2nd ed.: (1938). New York: Norton.Google Scholar
Russell, Bertrand (1905): “On Denoting,” Mind, New Series 14, 479–493.Google Scholar
Russell, Bertrand (1919): Mysticism and Logic. London: George Allen and Unwin.Google Scholar
Russell, Bertrand (1920): Introduction to Mathematical Philosophy. London: George Allen and Unwin.Google Scholar
Saccheri, Girolamo (1920) [Euclides]: Euclides Vindicatus. Translated by Halsted, George Bruce. Chicago: Open Court. (1920 ed. With reproduction of t.-p. of original edition, 1733. Latin and English on opposite pages.)Google Scholar
Sanderson, Robert (1618): Logicae Artis Compendium. Oxford: Lichfield and Short. Reprinted in 1985, edited by Ashworth, E. J. Bologna: Cooperativa Libraria Universitaria Editrice Bologna.Google Scholar
Schönfeld, Martin (2000): The Philosophy of the Young Kant: The Pre-critical Project. Oxford: Oxford University Press.Google Scholar
Schulthess, Peter (1981): Relation und Funktion: Eine systematische und entwicklungsgeschichtliche Untersuchung zur theoretischen Philosophie Kants. Berlin: de Gruyter.Google Scholar
Schultz, Johann (1784) [Entdeckte]: Entdeckte Theorie der Parallelen. Königsberg: Kanter.Google Scholar
Schultz, Johann (1789, 1792) [Prüfung]: Prüfung der kantischen Kritik der reinen Vernunft. Königsberg: Hartung.Google Scholar
Schultz, Johann (1790): Anfangsgründe der reinen Mathesis. Königsberg: Hartnung.Google Scholar
Segner, Johann Andreas von (1739) [Elementa]: Elementa Arithmeticae et Geometriae. Göttingen: Cuno.Google Scholar
Shabel, Lisa (1998): “Kant on the ‘Symbolic Construction’ of Mathematical Concepts,” Studies in History and Philosophy of Science 29, 589621.Google Scholar
Shabel, Lisa (2003): Mathematics in Kant’s Critical Philosophy: Reflections on Mathematical Practice. Studies in Philosophy Outstanding Dissertations series, Robert Nozick, ed. New York: Routledge.Google Scholar
Sher, Gila and Tieszen, Richard (eds.) (2000): Between Logic and Intuition: Essays in Honor of Charles Parsons. Cambridge: Cambridge University Press.Google Scholar
Shin, Sun-Joo (1997): “Kant’s Syntheticity Revisited by Peirce,” Synthese 113: 141.Google Scholar
Sieg, Wilfried (2016): “On Tait on Kant and Finitism,” Journal of Philosophy 113, 274285.Google Scholar
Simson, Robert (1806): The Elements of Euclid. Philadelphia: Mathew Carey.Google Scholar
Smith, Justin (2011): Divine Machines: Leibniz and the Sciences of Life. Princeton, NJ: Princeton University Press.Google Scholar
Stein, Howard (1990): “Eudoxus, and Dedekind: On the Ancient Greek Theory of Ratios and Its Relation to Modern Mathematics,” Synthese 84, 163211.Google Scholar
Strawson, P. F. (1966): The Bounds of Sense. London: Methuen & Co.Google Scholar
Sutherland, Daniel (2004a): “The Role of Magnitude in Kant’s Critical Philosophy,” Canadian Journal of Philosophy 34, 411442.Google Scholar
Sutherland, Daniel (2004b): “Kant’s Philosophy of Mathematics and the Greek Mathematical Tradition,” Philosophical Review 113, 157201.Google Scholar
Sutherland, Daniel (2005): “The Point of Kant’s Axioms of Intuition,” Pacific Philosophical Quarterly 86, 135159.Google Scholar
Sutherland, Daniel (2006): “Kant on Arithmetic, Algebra, and the Theory of Proportions,” Journal of the History of Philosophy 44, 533558.Google Scholar
Sutherland, Daniel (2008): “From Kant to Frege: Numbers, Pure Units, and the Limits of Conceptual Representation,” Royal Institute of Philosophy Supplement 63, 135–64.Google Scholar
Sutherland, Daniel (2010): “Philosophy, Geometry, and Logic in Leibniz, Wolff, and the Early Kant,” in Domski, and Dickson, (eds.), 155–192.Google Scholar
Sutherland, Daniel (2017): “Kant’s Conception of Number”, Philosophical Reviews 126, 147190.Google Scholar
Taisbak, Christian M. (2000): Dedomena: Euclid’s Data, or, the Importance of Being Given. Copenhagen: Museum Tusculanum Press.Google Scholar
Tait, William W. (1996): “Frege against Cantor and Dedekind: On the Concept of Number,” in Schirn, Matthias (ed.): Frege: Importance and Influence. Berlin: de Gruyter, 70113. Reprinted in Tait (2005), 212–251.Google Scholar
Tait, William W. (2000): “Cantor’s Grundlagen and the Paradoxes of Set Theory,” in Sher, and Tieszen, (eds.) (2000), 269–290. Reprinted in Tait (2005), 252–275.Google Scholar
Tait, William W. (2005): The Provenance of Pure Reason. Oxford: Oxford University Press.Google Scholar
Tait, William W. (2016): “Kant and Finitism,” Journal of Philosophy 113, 261273.Google Scholar
Tetens, J. N. (1777): Philosophische Versuche über die menschliche Natur und ihre Entwicklung (2 vols.). Leipzig: Weidmanns, Erben und Reich. Reprinted in 1979, Hildesheim: Georg Olms.Google Scholar
Thompson, Manley (1972): “Singular Terms and Intuitions in Kant’s Epistemology,” Review of Metaphysics 26, 314343. Reprinted in Posy (ed.) (1992), 81–107.Google Scholar
Timerding, H. (1919): “Kant und Euler,” Kant-Studien 23, 1864.Google Scholar
Tolley, Clinton (2012): “Bolzano and Kant on the Nature of Logic,” History and Philosophy of Logic 33, 307327.Google Scholar
Tonelli, Giorgio (1959): “Der Streit über die mathematische Methode in der Philosophie in der ersten Hälfte des 18. Jahrhunderts,” Archiv für Philosophie 9, 3766.Google Scholar
Vaihinger, H. (1881, 1892): Commentar zu Kants Kritik der reinen Vernunft (2 vols.). Stuttgart: Spemann.Google Scholar
van Atten, Mark (2012): “Kant and Real Numbers,” in Dybjer, Peter, Lindström, Sten, Palmgren, Erik, and Sundholm, B. G. (eds.), Epistemology Versus Ontology: Essays in the Philosophy of Mathematics in Honor of Per Martin-Löf. Dordrecht: Springer, 321.Google Scholar
Vanzo, Alberto (2012): Kant e la formazione dei concetti. Trento: Verifiche.Google Scholar
Vilkko, Risto and Hintikka, Jaakko (2006): “Kant and the Development of Modern Logic,” in Lenk, Hans and Wiehl, Reiner (eds.) (2006): Kant Today – Kant aujourd’hui – Kant heute: Results of the IIP Conference. Berlin: Lit Verlag, 112126.Google Scholar
Vuillemin, Jules (1960): Mathématiques et métaphysiques chez Descartes. Paris: Presses universitaires de France.Google Scholar
Warda, Arthur (1922): Immanuel Kants Bücher. Berlin: Breslauer.Google Scholar
Webb, Judson C. (2006): “Hintikka on Aristotelean Constructions, Kantian Intuitions and Peircean Theorems,” in Auxier, E. R. and Hahn, L. E. (eds.): The Philosophy of Jaakko Hintikka. Chicago: Open Court, 195265.Google Scholar
Weil, André (1983): Number Theory: An Approach through History from Hammurapi to Legendre. Boston: Birkhauser.Google Scholar
Whitehead, Alfred (1919): An Enquiry Concerning the Principles of Natural Knowledge. Cambridge: Cambridge University Press.Google Scholar
Whitehead, Alfred (1920): The Concept of Nature. Cambridge: Cambridge University Press.Google Scholar
Whitehead, Alfred (1929): Process and Reality. New York: Macmillan.Google Scholar
Wilson, Kirk Dallas (1975): “Kant on Intuition,” Philosophical Quarterly 25, 247265.Google Scholar
Wilson, Margaret D. (1967): “Leibniz and Locke on ‘First Truths’,” Journal of the History of Ideas 27, 347366.Google Scholar
Wittgenstein, Ludwig (1921) [Tractatus]: “Logisch-Philosophische Abhandlung”, in Annalen der Naturphilosophie 14. Translated by Pears, D. F. and McGuinness, B. F. (1961) as: Tractatus Logico-Philosophicus. London: Routledge.Google Scholar
Wolff, Christian (1710) [Anfangs-Gründe]: Der Anfangs-Gründe aller mathematischen Wissenschaften. Halle: Renger. Reprinted in GW, 1:12 (1999).Google Scholar
Wolff, Christian (1712) [German Logic]: Vernünfftige Gedancken von den Kräften des menschlichen Verstandes. Halle: Renger. Reprinted in GW, 1:1 (1973).Google Scholar
Wolff, Christian (1719) [German Metaphysics]: Vernünfftige Gedancken von Gott, der Welt und der Seele des Menschen. Halle: Renger. Reprinted in GW, 1:9 (1973).Google Scholar
Wolff, Christian (1728a): “Monitum de sua Philosophandi ratione, inserviens loco responsionis de ea, quae occasione operis sui Logici non nemo monuit in Actis Eruditorum anni 1728,” Acta Eruditorum, 546–551. Reprinted in GW, 2:35 (1974).Google Scholar
Wolff, Christian (1728b) [Auszug]: Auszug aus den Anfangsgründen aller mathematischen Wissenschaften (3rd ed.). Frankfurt: Renger. Reprinted in GW, 1:25 (2009).Google Scholar
Wolff, Christian (1730) [Elementa]: Elementa Matheseos Universae. Halle: Renger. Reprinted in GW, 2:29 (2003).Google Scholar
Wolff, Christian (1732) [Empirical Psychology]: Psychologia empirica methodo scientifica pertractata (2nd ed.). Reprinted in GW, 2:5 (1968).Google Scholar
Wolff, Christian (1734) [Lexicon]: Vollständiges Mathematisches Lexicon. Leipzig: Gleditsch. Reprinted in GW, 1:11 (1965).Google Scholar
Wolff, Christian (1736) [Latin Logic]: Philosophia rationalis sive logica, methodo scientifica pertractata et ad usum scientarum atque vitae aptata. Frankfurt: Renger. Reprinted in GW, 2:1.1–1.3 (1983).Google Scholar
Wolff, Christian (1739) A Treatise of Algebra: with the application of it to a variety of problems in arithmetic, to geometry, trigonometry, and conic sections: with the several methods of solving and constructing equations of the higher kind. Translated by Hanna, John. London: Printed for A. Bettesworth and C. Hitch.Google Scholar
Wolff, Christian (1962) [GW]: Gesammelte Werke. Edited by Ecole, Jean, Arndt, H. W., Theis, Robert, Schneiders, Werner, Carboncini-Gavanelli, Sonia. Hildesheim: Georg Olms.Google Scholar
Wolff, Michael (1995): Die Vollständigkeit der kantischen Urteilstafel: Mit einem Essay über Freges Begriffsschrift. Frankfurt: Klostermann.Google Scholar
Yandell, Benjamin H. (2002): The Honors Class: Hilbert's Problems and Their Solvers. Natick, MA: A. K. Peters.Google Scholar
Young, Michael J. (1982): “Kant on the Construction of Arithmetical Concepts,” Kant-Studien 73, 1746.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Edited by Carl Posy, Hebrew University of Jerusalem, Ofra Rechter, Tel-Aviv University
  • Book: Kant's Philosophy of Mathematics
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781107337596.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Edited by Carl Posy, Hebrew University of Jerusalem, Ofra Rechter, Tel-Aviv University
  • Book: Kant's Philosophy of Mathematics
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781107337596.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Edited by Carl Posy, Hebrew University of Jerusalem, Ofra Rechter, Tel-Aviv University
  • Book: Kant's Philosophy of Mathematics
  • Online publication: 24 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781107337596.014
Available formats
×