Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Phases and Mesophases
- 2 Phase Transitions
- 3 Order Parameters
- 4 Distributions
- 5 Particle–Particle Interactions
- 6 Dynamics and Dynamical Properties
- 7 Molecular Theories
- 8 Monte Carlo Methods
- 9 The Molecular Dynamics Method
- 10 Lattice Models
- 11 Molecular Simulations
- 12 Atomistic Simulations
- Appendix A A Modicum of Linear Algebra
- Appendix B Tensors and Rotations
- Appendix C Taylor Series
- Appendix D The Dirac Delta Function
- Appendix E Fourier Series and Transforms
- Appendix F Wigner Rotation Matrices and Angular Momentum
- Appendix G Molecular and Mesophase Symmetry
- Appendix H Quaternions and Rotations
- Appendix I Nuclear Magnetic Resonance
- Appendix J X-ray Diffraction
- Appendix K Stochastic Processes
- Appendix L Simulating Polarized Optical Microscopy Textures
- Appendix M Units and Conversion Factors
- Appendix N Acronyms and Symbols
- References
- Index
11 - Molecular Simulations
Published online by Cambridge University Press: 21 July 2022
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Phases and Mesophases
- 2 Phase Transitions
- 3 Order Parameters
- 4 Distributions
- 5 Particle–Particle Interactions
- 6 Dynamics and Dynamical Properties
- 7 Molecular Theories
- 8 Monte Carlo Methods
- 9 The Molecular Dynamics Method
- 10 Lattice Models
- 11 Molecular Simulations
- 12 Atomistic Simulations
- Appendix A A Modicum of Linear Algebra
- Appendix B Tensors and Rotations
- Appendix C Taylor Series
- Appendix D The Dirac Delta Function
- Appendix E Fourier Series and Transforms
- Appendix F Wigner Rotation Matrices and Angular Momentum
- Appendix G Molecular and Mesophase Symmetry
- Appendix H Quaternions and Rotations
- Appendix I Nuclear Magnetic Resonance
- Appendix J X-ray Diffraction
- Appendix K Stochastic Processes
- Appendix L Simulating Polarized Optical Microscopy Textures
- Appendix M Units and Conversion Factors
- Appendix N Acronyms and Symbols
- References
- Index
Summary
Off-lattice models both based on purely repulsive or attractive-repulsive Gay–Berne models allow us to simulate liquid crystal phases with some positional as well as orientational order. This chapter summarizes simulation results for anisotropic particles of elongated or discotic shape of the two types either pristine or decorated with charges, dipoles and quadrupoles. Beyond showing the effect of key molecular features (e.g. aspect ratios) on morphologies and phase diagrams, applications specific to liquid crystals, like the calculation of elastic constants and the simulation of a TN LCD, are reported. Tapered, bowlic and biaxial GB type single particle systems as well as more complex ones based of multi-particle mesogens (banana phases, polymers, elastomers) are discussed.
Keywords
- Type
- Chapter
- Information
- Liquid Crystals and their Computer Simulations , pp. 434 - 486Publisher: Cambridge University PressPrint publication year: 2022