Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T23:54:43.145Z Has data issue: false hasContentIssue false

12 - Extension to standard matter

Published online by Cambridge University Press:  04 August 2010

Thomas Thiemann
Affiliation:
Max-Planck-Institut für Gravitationsphysik, Germany
Get access

Summary

The exposition of Chapter 10 would be incomplete if we could not extend the framework to matter also, at least to the matter of the standard model. This is straightforward for gauge field matter, however for fermionic and Higgs matter one must first develop a background-independent mathematical framework [443]. We will discuss the essential steps in the next section and then outline the quantisation of the matter parts of the total Hamiltonian constraint in the section after that, see [441] for details.

We should point out that these representations are geared towards a background-independent formulation. The matter Hamiltonian operator of the standard model in a background spacetime is not carried by these representations. They make sense only if we couple quantum gravity. Also, while we did not treat supersymmetric matter explicitly, the following exposition reveals that it is straightforward to extend the formalism to Rarita–Schwinger fields. We will follow closely [441, 443].

Before we start we comment on a frequently stated criticism: as we will see there is no obstacle in finding background-independent kinematical representations of standard matter quantum field theories and these support the matter contributions to the Hamiltonian constraint. Thus, it seems as if in LQG there is no restriction on the matter content of the world. However, that is a premature conclusion: the associated Master Constraint of geometry and matter could have zero in its spectrum depending on the type of matter coupled. Indeed, the reason why the spectrum of the Master Constraint could not contain zero is due to normal or factor ordering effects which are finite but similar in nature to the infinite vacuum energies of background-dependent quantum field theories.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Extension to standard matter
  • Thomas Thiemann, Max-Planck-Institut für Gravitationsphysik, Germany
  • Book: Modern Canonical Quantum General Relativity
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755682.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Extension to standard matter
  • Thomas Thiemann, Max-Planck-Institut für Gravitationsphysik, Germany
  • Book: Modern Canonical Quantum General Relativity
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755682.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Extension to standard matter
  • Thomas Thiemann, Max-Planck-Institut für Gravitationsphysik, Germany
  • Book: Modern Canonical Quantum General Relativity
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511755682.016
Available formats
×