Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T04:27:59.073Z Has data issue: false hasContentIssue false

23 - Biofilm Formation

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Considers the structure of biofilms, extracellular polymeric substances, quorum sensing, surface interactions and mixed species biofilms.

Keywords

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 259 - 277
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Ben Jacob, E. et al., Cooperative self-organisation of microorganisms. Advances in Physics 2000, 49 (4), 395554.CrossRefGoogle Scholar
Lewandowski, Z.; Beyenal, H., Fundamentals of Biofilm Research, 2nd ed. CRC Press: 2013.CrossRefGoogle Scholar
Li, H. et al., Data driven quantitative modelling of bacterial active nematics. PNAS 2019 116 (3), 777.CrossRefGoogle ScholarPubMed
Mazza, M. G. The physics of biofilms – an introduction. Journal of Physics D 2016, 49 (20), 203001.CrossRefGoogle Scholar

References

O’Toole, G. O.; Kaplan, H. B.; Kolter, R., Biofilm formation as microbial development. Annual Review of Microbiology 2000, 54, 4979.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (3), 036001.CrossRefGoogle ScholarPubMed
Yin, W.; Wang, Y.; Liu, L.; He, J., Biofilms: The microbial ‘protective clothing’ in extreme environments. International Journal of Molecular Sciences 2019, 20 (14), 3423.CrossRefGoogle ScholarPubMed
Flemming, H. C., EPS – then and now. Microorganisms 2016, 4 (4), 41.CrossRefGoogle ScholarPubMed
Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O., Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents 2010, 35 (4), 322332.CrossRefGoogle ScholarPubMed
Mazza, M., The physics of biofilms – an introduction. Journal of Physics D: Applied Physics 2016, 49 (20), 203001.CrossRefGoogle Scholar
Pepper, I.; Gerba, C. P.; Gentry, T. J., Environmental Microbiology, 3rd ed. Academic Press: 2015.CrossRefGoogle Scholar
Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S., Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology 2016, 14 (9), 563575.CrossRefGoogle ScholarPubMed
Vidakovic, L.; Singh, P. K.; Hartmann, R.; Nadell, C. D.; Drescher, K., Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nature Microbiology 2018, 3 (1), 2631.CrossRefGoogle ScholarPubMed
Torok, E.; Moran, E.; Cooke, F., Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press: 2016.CrossRefGoogle Scholar
Jefferson, K. K., What drives bacteria to produce a biofilm? FEMS Microbiology Letters 2004, 236 (2), 163173.CrossRefGoogle ScholarPubMed
Yan, J.; Nadell, C. D.; Stone, H. A.; Wingreen, N. S.; Bassler, B. L., Extracellular-matrix mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications 2017, 8 (1), 327.CrossRefGoogle ScholarPubMed
Chua, S. L.; et al., Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nature Communications 2014, 5, 4462.CrossRefGoogle ScholarPubMed
Sauer, K.; Camper, A. K.; Ehrlich, G. D.; Costerton, J. W.; Davies, D. G., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology 2002, 184 (4), 11401154.CrossRefGoogle ScholarPubMed
Dyer, B. D., A Field Guide to Bacteria. Comstock Publishing Associates: 2003.Google Scholar
Vlamakis, H.; Chai, Y.; Beauregard, P.; Losick, R.; Kolter, R., Sticking together: Building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology 2013, 11 (3), 157168.CrossRefGoogle ScholarPubMed
Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P., Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology 2004, 2 (2), 95108.CrossRefGoogle ScholarPubMed
Stalder, T.; Top, E., Plasmid transfer in biofilms: A perspective on limitations and opportunities. npj Biofilms and Microbiomes 2016, 2, 16022.CrossRefGoogle ScholarPubMed
Lewandowki, Z.; Beyenal, H., Fundamentals of Biofilm Research. CRC Press: 2013.CrossRefGoogle Scholar
Holmes, S.; Huber, W., Modern Statistics for Modern Biology. Cambridge University Press: 2019.Google Scholar
Martinez, R.; Liu, J.; Suel, G. M.; Garcia-Ojalvo, J., Bistable emergence of oscillations in growing Bacillus subtilis biofilms. PNAS 2018, 115 (36), E8333–E8340.Google Scholar
Frankel, R. B.; Blakemore, R. P.; Wolfe, R. S., Magnetite in freshwater magnetotactic bacteria. Science 1979, 203 (4387), 13551356.CrossRefGoogle ScholarPubMed
Stewart, P. S.; Franklin, M. J., Physiological heterogeneity in biofilms. Nature Reviews Microbiology 2008, 6 (3), 199210.CrossRefGoogle ScholarPubMed
Billings, N.; Birjiniuk, A.; Samad, T. S.; Doyle, P. S.; Ribbeck, K., Material properties of biofilms – key methods for understanding permeability and mechanics. Reports on Progress in Physics 2015, 78 (3), 036601.CrossRefGoogle Scholar
Magalhaes, A. P.; Franca, A.; Pereira, M. O.; Cerca, N., RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms. Scientific Reports 2019, 9 (1), 13639.CrossRefGoogle ScholarPubMed
Stewart, P. S.; Zhang, T.; Xu, R.; Pitts, B.; Walters, M. C.; Roe, F.; Kikhney, J.; Moter, A., Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms and Microbiomes 2016, 2, 16012.CrossRefGoogle ScholarPubMed
Heydorn, A.; Nielsen, A. T.; Hentzer, M.; Sternberg, C.; Givskov, M.; Ersboll, B. K.; Molin, S., Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146 (10), 23952407.CrossRefGoogle ScholarPubMed
Limoli, D. H.; Jones, C. J.; Wozniak, D. J., Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology spectrum 2015, 3 (3), 10.1128.CrossRefGoogle ScholarPubMed
Moradali, M. F.; Rehm, B. H. A., Bacterial biopolymers: From pathogenesis to advanced materials. Nature Reviews Microbiology 2020, 18 (4), 195210.CrossRefGoogle ScholarPubMed
Flemming, H. C.; Neu, T. R.; Wozniak, D. J., The EPS Matrix: The house of biofilm cells. Journal of Bacteriology 2007, 189 (22), 79457947.CrossRefGoogle ScholarPubMed
Mah, T. F.; O’Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 2001, 9 (1), 3439.CrossRefGoogle ScholarPubMed
Hentzer, M.; Teitzel, G. M.; Balzer, G. I.; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, M. R., Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology 2001, 183 (18), 53955401.CrossRefGoogle ScholarPubMed
Zaman, M.; Andreason, M., Cross-talk between individual phenol-soluble modulins in Staphylococcus aureus biofilm enables rapid and efficient amyloid formation. eLife 2020, 9, e59776.CrossRefGoogle ScholarPubMed
Taglialegna, A.; Matilla-Cuenca, L.; Dorado-Morales, P.; Navarro, S.; Ventura, S.; Garnett, J. A.; Lasa, I.; Valle, J., The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. npj Biofilms and Microbiomes 2020, 6 (1), 15.CrossRefGoogle ScholarPubMed
Calvin, K. M., The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environmental Microbiology 2012, 14 (8), 19131928.CrossRefGoogle Scholar
Nizer, W. S.; Inkovskiy, V.; Versey, Z.; Strempel, N.; Cassol, E.; Overhage, J., Oxidative stress response in Pseudomonas aeruginosa. Pathogens 2021, 10 (9), 1187.CrossRefGoogle Scholar
Mah, T. F.; Pitts, B.; Pellock, B.; Walker, G. C.; Stewart, P. S.; O’Toole, G. A., A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426 (6964), 306310.CrossRefGoogle ScholarPubMed
Ma, L.; Conover, M.; Lu, H.; Parsek, M. R.; Bayles, K.; Wozniak, D. J., Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLOS Pathogens 2009, 5 (3), e1000354.CrossRefGoogle ScholarPubMed
Horvat, M.; Pannuri, A.; Romero, T.; Dogsa, I.; Stopar, D., Viscoelastic response of Escherichia coli biofilms to genetically altered expression of extracellular matrix components. Soft Matter 2019, 15 (25), 5042.CrossRefGoogle ScholarPubMed
Teschler, J. K.; Zamorano-Sanchez, D.; Utada, A. S.; Warner, C. J. A.; Wong, G. C. L.; Linington, R. G.; Yildiz, F. H., Living in the matrix: Assembly and control of Vibrio cholerae biofilms. Nature Reviews Microbiology 2015, 13 (5), 255268.CrossRefGoogle ScholarPubMed
Thongsomboon, W.; Serra, D. O.; Possling, A.; Hadjineophytou, C.; Hengge, R.; Cegelski, L., Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose. Science 2018, 359 (6373), 334338.CrossRefGoogle ScholarPubMed
Peschel, A.; Otto, M., Phenol-soluble modulins and staphylococcal infection. Nature Reviews Microbiology 2013, 11 (10), 667673.CrossRefGoogle ScholarPubMed
Mourer, T.; Ghalid, M. E.; d’Enfert, C.; Bachellier-Bassi, S., Involvement of amyloid proteins in the formation of biofilms in the pathogenic yeast Candida albicans. Research in Microbiology 2021, 172 (3), 103813.CrossRefGoogle ScholarPubMed
Alberts, B., Molecular Biology of the Cell, 6th ed. Garland Science: 2015.Google Scholar
Romero, D.; Aguilar, C.; Losick, R.; Kolter, R., Amyloid fibers provide structural integrity of Bacillus subtilis biofilms. PNAS 2010, 107 (5), 22302234.CrossRefGoogle ScholarPubMed
Gong, H.; et al., Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. ACS Applied Materials and Interfaces 2020, 12 (40), 4442044432.CrossRefGoogle ScholarPubMed
Geiger, A.; Fardeau, M. L.; Falsen, E.; Ollivier, B.; Cuny, G., Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. International Journal of Systematic and Evolutionary Microbiology 2009, 60 (Pt 6), 12611265.CrossRefGoogle ScholarPubMed
Labrenz, M.; et al., Formation of spalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 2000, 290 (5497), 17441747.CrossRefGoogle ScholarPubMed
Beuth, L.; Pfeiffer, C. P.; Schroder, U., Copper-bottomed: Electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy and Environmental Science 2020, 13 (9), 31023109.CrossRefGoogle Scholar
Henkel, J. S.; Baldwin, M. R.; Barbieri, J. T., Toxins from bacteria. EXS 2010, 100, 129.Google ScholarPubMed
Wilson, M., Bacteriology of Humans: An Ecological Perspective. Blackwell: 2008.Google Scholar
Lenz, D. H.; Mok, K. C.; Lilley, B. N.; Kulkarni, R. V.; Wingreen, N. S.; Bassler, B. L., The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004, 118 (1), 6982.CrossRefGoogle ScholarPubMed
Ongena, M.; Jacques, P., Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology 2008, 16 (3), 115125.CrossRefGoogle ScholarPubMed
Israelachvili, J. N., Intermolecular and Surface Forces. Academic Press: 2011.Google Scholar
Peyoux, F.; Bomatis, J. M.; Wallach, J., Recent trends in the biochemistry of surfactin. Applied Microbiology Biotechnology 1999, 51 (5), 553563.CrossRefGoogle Scholar
Raaijmakers, J. M.; de Bruijn, I.; Nybroe, O.; Ongena, M., Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews 2010, 34 (6), 10371062.CrossRefGoogle ScholarPubMed
de Gennes, P. G.; Brochard-Wyart, F.; Quere, D., Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves. Springer: 2003.Google Scholar
Waigh, T. A., The Physics of Living Processes. Wiley: 2014.CrossRefGoogle Scholar
Epstein, A. K.; Pokroy, B.; Seminara, A.; Aizenberg, J., Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. PNAS 2011, 108 (3), 9951000.CrossRefGoogle ScholarPubMed
Rooney, L. M.; Amos, W. B.; Hoskisson, P. A.; McConnell, G., Intra-colony channels in E. coli function as a nutrient uptake system. The ISME Journal 2020, 14 (10), 24612473.CrossRefGoogle Scholar
Wilking, J. N.; Zaburdaev, V.; De Volder, M.; Losick, R.; Brenner, M. P.; Weitz, D. A., Liquid transport facilitated by channels in Bacillus subtilis biofilms. PNAS 2013, 110 (3), 848852.CrossRefGoogle ScholarPubMed
Periasamy, S.; Joo, H. S.; Duong, A. C.; Bach, T. H. L.; Tan, V. Y.; Chatterjee, S. S.; Cheung, G. Y.; Otto, M., How Staphylococcus aureus biofilms develop their characteristic structure. PNAS 2012, 109 (4), 12811286.CrossRefGoogle ScholarPubMed
Douarche, C.; Allain, J. M.; Raspaud, E., Bacillus subtilis bacteria generate an internal mechanical force within a biofilm. Biophysical Journal 2015, 109 (10), 21952202.CrossRefGoogle ScholarPubMed
Asally, M.; et al., Localized cell death focuses mechanical forces during 3D patterning in a biofilm. PNAS 2012, 109 (46), 1889118896.CrossRefGoogle Scholar
Seminara, A.; Angelini, T. E.; Wilking, J. N.; Vlamakis, H.; Ebrahim, S.; Kolter, R.; Weitz, D. A.; Brenner, M. P., Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. PNAS 2012, 109 (4), 11161121.CrossRefGoogle Scholar
Huang, J. D.; et al., Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nature Chemical Biology 2019, 15 (1), 3441.CrossRefGoogle ScholarPubMed
Trejo, M.; Douarche, C.; Bailleux, V.; Poulard, C.; Mariot, S.; Regeard, C.; Raspaud, E., Elasticity and wrinkled morphology of Bacillus subtilis pellicles. PNAS 2013, 110 (6), 20112016.CrossRefGoogle ScholarPubMed
Zhang, C.; Li, B.; Tang, J. Y.; Qin, Z.; Feng, X. Q., Experimental and theoretical studies on the morphogenesis of bacterial biofilms. Soft Matter 2017, 13 (40), 73897397.CrossRefGoogle ScholarPubMed
Si, T.; Ma, Z.; Tang, J. X., Capillary flows and mechanical buckling in a growing annular bacterial colony. Soft Matter 2018, 14 (2), 301311.CrossRefGoogle Scholar
Orazi, G.; O’Toole, G. A., ‘It takes a village’: Mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms. Journal of Bacteriology 2019, 202 (1), e00530-19.CrossRefGoogle ScholarPubMed
Houry, A.; Gohar, M.; Deschamps, J.; Tischenko, E.; Aymerich, S.; Gruss, A.; Briandet, R., Bacterial swimmers that infiltrate and take over the biofilm matrix. PNAS 2012, 109 (32), 1308813093.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Biofilm Formation
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.027
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Biofilm Formation
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.027
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Biofilm Formation
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.027
Available formats
×