Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T13:22:00.423Z Has data issue: false hasContentIssue false

16 - Growth of Bacteria

from Part II - Single Bacteria

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Describes simple mathematical models for bacterial growth and death and how to experimentally measure growth curves.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 164 - 175
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Allen, R. J.; Waclaw, B., Bacterial growth: A statistical physicist’s guide. Reports on Progress in Physics 2018, 82 (1), 016601.CrossRefGoogle ScholarPubMed
Cappuccino, J. G.; Welsh, C., Microbiology: A Lab Manual, 11th ed. Pearson: 2018. Considers the practical skills required to culture bacteria e.g. aseptic technique.Google Scholar
Jun, S.; Si, F.; Pugatch, R.; Scott, M., Fundamental principles in bacterial physiology – history, recent progress, and the future with focus on cell size control. Reports on Progress in Physics 2018, 81 (5), 56601.CrossRefGoogle ScholarPubMed
Otto, S.; Day, T., A Biologist’s Guide to Mathematical Modelling in Ecology and Evolution, Princeton: 2007.CrossRefGoogle Scholar
Pham, V. H. T.; Kim, J., Cultivation of unculturable soil bacteria. Trends in Biotechnology 2012, 30 (9), 475484.CrossRefGoogle ScholarPubMed
Scott, M.; Hwa, T., Bacterial growth laws and their applications. Current Opinion in Biotechnology 2011, 22, 559565.CrossRefGoogle ScholarPubMed

References

Edelstein-Keshet, L., Mathematical Models in Biology. SIAM: 2005.CrossRefGoogle Scholar
Allen, R. J.; Waclaw, B., Bacterial growth: A statistical physicist’s guide. Reports on Progress in Physics 2018, 82 (1), 016601.CrossRefGoogle ScholarPubMed
Kaeberlein, T.; Lewis, K.; Epstein, S. S., Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 2002, 296 (5570), 11271129.CrossRefGoogle Scholar
Capuccino, J. G.; Welsh, C., Microbiology: A Laboratory Manual. Pearson: 2018.Google Scholar
Dyer, B. D., A Field Guide to Bacteria. Comstock Publishing Associates: 2003.Google Scholar
Kundakad, B.; Sevious, T.; Liang, Y.; Rice, S. A.; Kjelleberg, S.; Doyle, P. S., Mechanical properties of the superficial biofilm layer determine the architecture of biofilm. Soft Matter 2016, 12 (26), 57185726.CrossRefGoogle Scholar
Schaffner, M.; Ruhs, P. A.; Coulter, F.; Kilcher, S.; Studart, A. R., 3D printing of bacteria into functional complex materials. Science Advances 2017, 3, eaao6804.CrossRefGoogle ScholarPubMed
Lehner, B. A. E.; Schmieden, D. T.; Meyer, A. S., A straightforward approach for 3D bacterial printing. ACS Synthetic Biology 2017, 6 (7), 11241130.CrossRefGoogle ScholarPubMed
Huang, Y.; Xia, A.; Yang, G.; Jun, F., Bioprinting living biofilms through optogenetic manipulation. ACS Synthetic Biology 2018, 7 (5), 11951200.CrossRefGoogle ScholarPubMed
Jun, S.; Si, F.; Pugatch, R.; Scott, M., Fundamental principles in bacterial physiology – history, recent progress, and the future with focus on cell size control: A review. Reports on Progress in Physics 2018, 81 (5), 056601.CrossRefGoogle ScholarPubMed
Scott, M.; Hwa, T., Bacterial growth laws and their application. Current Opinion in Biotechnology 2011, 22 (4), 559565.CrossRefGoogle Scholar
Osella, M.; Tans, S. J.; Lagomarsino, M. C., Step by step, cell by cell: Quantification of the bacterial cell cycle. Trends in Microbiology 2017, 25 (4), 250256.CrossRefGoogle ScholarPubMed
Reshes, G.; Vanounou, S.; Fishov, I.; Feingold, M., Cell shape dynamics in Escherichia coli. Biophysical Journal 2008, 94 (1), 251264.CrossRefGoogle ScholarPubMed
Banerjee, S.; Lo, K.; Daddysman, M. K.; Selewa, A.; Kuntz, T.; Dinner, A. R.; Scherer, N. F., Biphasic growth dynamics control cell division in Caulobacter crescentus. Nature Microbiology 2017, 2, 17116.CrossRefGoogle ScholarPubMed
Godin, M.; et al., Using the bouyant mass to measure the growth of single cells. Nature Methods 2010, 7 (5), 387390.CrossRefGoogle Scholar
Mir, M.; Wang, Z.; Shen, Z.; Bednarz, M.; Bashir, R.; Golding, I.; Prasanth, S. G.; Popescu, G., Optical measurement of cell-dependent cell growth. Proceedings of the National Academy of Sciences of the United States of America 2011, 108 (32), 1312413129.CrossRefGoogle Scholar
Rojas, E. R.; Huang, K. C., Regulation of microbial growth by turgor pressure. Current Opinion in Microbiology 2018, 42, 6270.CrossRefGoogle ScholarPubMed
Facchetti, G.; Chang, F.; Howard, M., Controlling cell size through sizer mechanisms. Current Opinion in Systems Biology 2017, 5, 8692.CrossRefGoogle ScholarPubMed
Nordholt, N.; van Heerden, J. H.; Bruggeman, F. J., Biphasic cell-size and growth-rate homeostasis by single Bacillus subtilis cells. Current Biology 2020, 30 (12), 22382247.CrossRefGoogle ScholarPubMed
White, D.; Drummond, J.; Fuqua, C., The Physiology and Biochemistry of Prokaryotes, 4th ed. Oxford University Press: 2012.Google Scholar
Kim, B. H.; Gadd, G. M., Prokaryotic Metabolism and Physiology, 2nd ed. Cambridge University Press: 2019.CrossRefGoogle Scholar
van den Ent, F.; Amos, L. A.; Lowe, J., Prokaryotic origin of the actin cytoskeleton. Nature 2001, 413 (6851), 3944.CrossRefGoogle ScholarPubMed
Ramos-Leon, F.; Ramamurthi, K. S., Cytoskeletal proteins: Lessons learned from bacteria. Physical Biology 2022, 19 (2), 021005.CrossRefGoogle ScholarPubMed
Howard, A.; Rutenberg, A. D.; de Vet, S., Dynamic compartmentalization of bacteria: Accurate diffusion in E. coli. Physical Review Letters 2001, 87 (27 Pt 1), 278102.CrossRefGoogle Scholar
Whitley, K. D.; et al., FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division. Nature Communications 2021, 12 (1), 2448.CrossRefGoogle ScholarPubMed
Raskin, D. M.; de Boer, P. A. J., Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (9), 49714976.CrossRefGoogle Scholar
Snyder, L.; Peters, J. E.; Henkin, T. M.; Champness, W., Molecular Genetics of Bacteria, 4th ed. American Society for Microbiology: 2013.Google Scholar
Bertrand, R. L., Lag phase is a dynamic, organized, adaptive and evolvable period that prepares bacteria for cell division. Journal of Bacteriology 2019, 201 (7), e00697–18.CrossRefGoogle ScholarPubMed
Otto, S.; Day, T., A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution. Princeton University Press: 2007.CrossRefGoogle Scholar
Wittrup, K. D.; Tidor, B.; Hackel, B. J.; Sarkar, C. A., Quantitative Fundamentals of Molecular and Cellular Bioengineering. MIT Press: 2020.Google Scholar
Liu, J. et al., Coupling between distant biofilms and emergence of nutrient time-sharing. Science 2017, 356 (6338), 638642.CrossRefGoogle ScholarPubMed
Balagaddle, F. K.; You, L.; Hansen, C. L.; Arnold, F. H.; Quake, S. R., Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005, 309 (5731), 137140.CrossRefGoogle Scholar
Yang, Y.; Santos, A. L.; Xu, L.; Lotton, C.; Taddei, F.; Lindner, A. B., Temporal scaling of aging as an adaptive strategy of Escherichia coli. Science Advances 2019, 5 (5), eaaw2069.CrossRefGoogle Scholar
Confalonieri, F.; Sommer, S., Bacterial and archael resistance to ionizing radiation. Journal of Physics: Conference Series 2011, 261 (1), 012005.Google Scholar
Birjinuik, A.; Billings, A. N.; Nance, E.; Hanes, J.; Ribbeck, K.; Doyle, P. S., Single particle tracking reveals spatial and dynamic organization of the E. coli biofilm matrix. New Journal of Physics 2014, 16 (8), 085014.CrossRefGoogle Scholar
Solopova, A.; van Gestel, J.; Weissing, F. J.; Bachmann, H.; Teusink, B.; Kok, J.; Kuipers, O. P., Bet-hedging during bacterial diauxic shift. Proceedings of the National Academy of Sciences of the United States of America 2014, 111 (20), 74277432.CrossRefGoogle ScholarPubMed
Nassif, N.; Bouvet, O.; Rager, M. N.; Roux, C.; Coradin, T.; Livage, J., Living bacteria in silica gels. Nature Materials 2002, 1 (1), 4244.CrossRefGoogle ScholarPubMed
Faith, J. J.; et al., The long-term stability of the human gut microbiota. Science 2013, 341 (6141), 1237439.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Growth of Bacteria
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Growth of Bacteria
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Growth of Bacteria
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.019
Available formats
×