Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T06:28:42.887Z Has data issue: false hasContentIssue false

8 - Threatened Hosts, Threatened Parasites?

Parasite Diversity and Distribution in Red-Listed Primates

from Part II - Habitat Alteration in the Anthropocene

Published online by Cambridge University Press:  25 January 2019

Alison M. Behie
Affiliation:
Australian National University, Canberra
Julie A. Teichroeb
Affiliation:
University of Toronto, Scarborough
Nicholas Malone
Affiliation:
University of Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albon, S., Stien, A., Irvine, R., et al. (2002). The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London Series B: Biological Sciences, 269(1500), 16251632.CrossRefGoogle ScholarPubMed
Almeida, M. A. B. d., Dos Santos, E., da Cruz Cardoso, J., et al. (2012). Yellow fever outbreak affecting Alouatta populations in southern Brazil (Rio Grande Do Sul State), 2008–2009. American Journal of Primatology, 74(1), 6876.CrossRefGoogle Scholar
Altizer, S., Nunn, C. L. & Lindenfors, P. (2007). Do threatened hosts have fewer parasites? A comparative study in primates. Journal of Animal Ecology, 76(2), 304–14.Google Scholar
Anderson, R. C. & Prestwood, A. K. (1981). Lungworms. In: Davidson, W. R., Hayes, F. A., Nettles, V. F. & Kellogg, F. E. (eds) Diseases and Parasites of the White-Tailed Deer. Tallahasse, FL: Tall Timbers Research Station, pp. 266317.Google Scholar
Arneberg, P., Skorping, A., Grenfell, B. & Read, A. F. (1998). Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London Series B: Biological Sciences, 265, 1283–9.Google Scholar
Arnold, C., Matthews, L. J. & Nunn, C. L. (2010). The 10k Trees website: a new online resource for primate phylogeny. Evolutionary Anthropology, 19(3), 114–18.Google Scholar
Barber, B. E., Rajahram, G. S., Grigg, M. J., William, T. & Anstey, N. M. (2017). World malaria report: time to acknowledge Plasmodium knowlesi malaria. Malaria Journal, 16(1), 135.CrossRefGoogle ScholarPubMed
Barger, M. A. & Esch, G. W. (2002). Host specificity and the distribution–abundance relationship in a community of parasites infecting fishes in streams of North Carolina. Journal of Parasitology, 88(3), 446–53.Google Scholar
Behie, A. & Pavelka, M. M. (2013). Interacting roles of diet, cortisol levels, and parasites in determining population density of Belizean howler monkeys in a hurricane damaged forest fragment. In: Marsh, L. K. & Chapman, C. A. (eds) Primates in Fragments. New York: Springer, pp. 447456.Google Scholar
Bermejo, M., Rodríguez-Teijeiro, J. D., Illera, G., et al. (2006). Ebola outbreak killed 5000 gorillas. Science, 314(5805), 1564.Google Scholar
Bublitz, D. C., Wright, P. C., Rasambainarivo, F. T., et al. (2014). Pathogenic enterobacteria in lemurs associated with anthropogenic disturbance. American Journal of Primatology, 77(3), 330–7.Google Scholar
Castro, F. D. & Bolker, B. (2005). Mechanisms of disease‐induced extinction. Ecology Letters, 8(1), 117–26.Google Scholar
Chapman, C. A., Gillespie, T. R. & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: how will anthropogenic change affect host–parasite interactions? Evolutionary Anthropology, 14(4), 134–44.Google Scholar
Chapman, C. A., Speirs, M. L., Gillespie, T. R., Holland, T. & Austad, K. M. (2006). Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups. American Journal of Primatology, 68(4), 397409.CrossRefGoogle ScholarPubMed
Chapman, C. A., Saj, T. L. & Snaith, T. V. (2007). Temporal dynamics of nutrition, parasitism, and stress in colobus monkeys: implications for population regulation and conservation. American Journal of Physical Anthropology, 134(2), 240–50.Google Scholar
Civitello, D. J., Cohen, J., Fatima, H., et al. (2015). Biodiversity inhibits parasites: broad evidence for the dilution effect. Proceedings of the National Academy of Sciences, 112(28), 86678671.CrossRefGoogle ScholarPubMed
Cooper, N. & Nunn, C. L. (2013). Identifying future zoonotic disease threats: where are the gaps in our understanding of primate infectious diseases? Evolution, Medicine, and Public Health, 2013(1), 2736.Google Scholar
Cox-Singh, J. (2012). Zoonotic malaria: Plasmodium knowlesi, an emerging pathogen. Current Opinion in Infectious Diseases, 25(5), 530–6.CrossRefGoogle ScholarPubMed
Cox-Singh, J. & Singh, B. (2008). Knowlesi malaria: newly emergent and of public health importance? Trends in Parasitology, 24(9), 406–10.Google Scholar
Dobson, A. & Foufopoulos, J. (2001). Emerging infectious pathogens of wildlife. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1411), 1001–12.Google Scholar
Dobson, A. P. & Hudson, P. J. (1986). Parasites, disease and the structure of ecological communities. Trends in Ecology & Evolution, 1(1), 1115.Google Scholar
Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. (2008). Homage to Linnaeus: how many parasites? How many hosts? Proceedings of the National Academy of Sciences of the United States of America, 105, 11482–9.Google Scholar
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. (2009). The sixth mass coextinction: are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences, 276(1670), 3037–45.Google ScholarPubMed
Estrada, A., Garber, P. A., Rylands, A. B., et al. (2017). Impending extinction crisis of the world’s primates: why primates matter. Science Advances, 3(1), e1600946.Google Scholar
Ezenwa, V. O. & Jolles, A. E. (2015). Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science, 347(6218), 175–7.Google Scholar
Frias, L., Stark, D. J., Salgado-Lynn, M., et al. (2018). Lurking in the dark: cryptic Strongyloides in a Bornean slow loris. International Journal for Parasitology: Parasites and Wildlife, 7(2), 141–6.Google Scholar
Ghai, R. R., Simons, N. D., Chapman, C. A., et al. (2014). Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Neglected Tropical Diseases, 8(10), e3256.Google Scholar
Gillespie, T. R., Chapman, C. A. & Greiner, E. C. (2005). Effects of logging on gastrointestinal parasite infections and infection risk in African primates. Journal of Applied Ecology, 42(4), 699707.CrossRefGoogle Scholar
Gillespie, T. R., Nunn, C. L. & Leendertz, F. H. (2008). Integrative approaches to the study of primate infectious disease: implications for biodiversity conservation and global health. American Journal of Physical Anthropology, 137(S47), 5369.Google Scholar
Gog, J., Woodroffe, R. & Swinton, J. (2002). Disease in endangered metapopulations: the importance of alternative hosts. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1492), 671–6.Google Scholar
Goldberg, T. L., Gillespie, T. R., Rwego, I. B., Estoff, E. L. & Chapman, C. A. (2008). Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerging Infectious Diseases, 14(9), 1375–82.Google Scholar
Gregory, R. D. (1990). Parasites and host geographic range as illustrated by waterfowl. Functional Ecology, 4(5), 645–54.CrossRefGoogle Scholar
Grenfell, B. T. & Gulland, F. M. D. (1995). Introduction: ecological impact of parasitism on wildlife populations. Parasitology, 111(51), S3S14.CrossRefGoogle Scholar
Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 33(2). DOI: 10.18637/jss.v003.102.Google Scholar
Hasegawa, H., Modrý, D., Kitagawa, M., et al. (2014). Humans and great apes cohabiting the forest ecosystem in Central African Republic harbour the same hookworms. PLoS Neglected Tropical Diseases, 8(3), e2715.Google Scholar
Hechinger, R. F. & Lafferty, K. D. (2005). Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society B: Biological Sciences, 272(1567), 1059–66.Google Scholar
Hoffmann, C., Zimmermann, F., Biek, R., et al. (2017). Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest. Nature, 548(7665), 82–6.Google Scholar
Holzmann, I., Agostini, I., Areta, J. I., et al. (2010). Impact of yellow fever outbreaks on two howler monkey species (Alouatta guariba clamitans and A. caraya) in Misiones, Argentina. American Journal of Primatology, 72(6), 475–80.Google Scholar
Hopkins, M. E. & Nunn, C. L. (2007). A global gap analysis of infectious agents in wild primates. Diversity and Distributions, 13(5), 561–72.Google Scholar
Hopkins, M. E. & Nunn, C. L. (2010). Gap analysis and the geographical distribution of parasites. In: Morand, S. & Krasnov, B. (eds) The Biogeography of Host–Parasite Interactions. Oxford: Oxford University Press, pp. 129–42.Google Scholar
Hosseini, P. R., Mills, J. N., Prieur-Richard, A.-H., et al. (2017). Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1722), 20160129.Google Scholar
Hudson, P. J. & Dobson, A. P. (1995). Macroparasites: observed patterns. In: Grenfell, B. T. & Dobson, A. P. (eds) Ecology of Infectious Diseases in Natural Populations. Cambridge: Cambridge University Press, pp. 144–76.Google Scholar
Hudson, P. & Greenman, J. (1998). Competition mediated by parasites: biological and theoretical progress. Trends in Ecology & Evolution, 13(10), 387–90.Google Scholar
Hudson, P. J., Dobson, A. P. & Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? Trends in Ecology and Evolution, 21(7), 381–5.Google Scholar
Isaac, N. J. B. & Cowlishaw, G. (2004). How species respond to multiple extinction threats. Proceedings of the Royal Society B: Biological Sciences, 271(1544), 1135–41.CrossRefGoogle ScholarPubMed
IUCN (2017). IUCN Red List of Threatened Species. Version 2017.3. Available at: www.iucnredlist.org (accessed 26 September 2017).Google Scholar
Jones, K. E., Bielby, J., Cardillo, M., et al. (2009). PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648.Google Scholar
Kalousová, B., Hasegawa, H., Petrželková, K. J., et al. (2016). Adult hookworms (Necator spp.) collected from researchers working with wild western lowland gorillas. Parasites & Vectors, 9(1), 75.CrossRefGoogle ScholarPubMed
Kaur, T., Singh, J., Tong, S. X., et al. (2008). Descriptive epidemiology of fatal respiratory outbreaks and detection of a human-related metapneumovirus in wild chimpanzees (Pan troglodytes) at Mahale Mountains National Park, western Tanzania. American Journal of Primatology, 70(8), 755–65.Google Scholar
Keesing, F., Holt, R. D. & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters, 9(4), 485–98.Google Scholar
Keesing, F., Belden, L. K., Daszak, P., et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647.Google Scholar
Knauf, S., Liu, H. & Harper, K. N. (2013). Treponemal infection in nonhuman primates as possible reservoir for human yaws. Emerging Infectious Diseases, 19(12), 2058–60.Google Scholar
Knauf, S., Gogarten, J., Schuenemann, V. J., et al. (2017). African nonhuman primates are infected with the yaws bacterium Treponema pallidum subsp. pertenue. bioRxiv.Google Scholar
Koh, L. P., Dunn, R. R., Sodhi, N. S., et al. (2004). Species coextinctions and the biodiversity crisis. Science, 305(5690), 1632–4.Google Scholar
Köndgen, S., Kühl, H., N’Goran, P. K., et al. (2008). Pandemic human viruses cause decline of endangered great apes. Current Biology, 18(4), 260–4.Google Scholar
Kowalewski, M. M., Salzer, J. S., Deutsch, J. C., et al. (2011). Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human–primate contact. American Journal of Primatology, 73(1), 7583.Google Scholar
Lauck, M., Sibley, S. D., Hyeroba, D., et al. (2013). Exceptional simian hemorrhagic fever virus diversity in a wild African primate community. Journal of Virology, 87(1), 688–91.Google Scholar
Leendertz, F. H., Ellerbrok, H., Boesch, C., et al. (2004). Anthrax kills wild chimpanzees in a tropical rainforest. Nature, 430(6998), 451–2.Google Scholar
Leendertz, F. H., Pauli, G., Maetz-Rensing, K., et al. (2006). Pathogens as drivers of population declines: the importance of systematic monitoring in great apes and other threatened mammals. Biological Conservation, 131(2), 325–37.Google Scholar
Leroy, E. M., Rouquet, P., Formenty, P., et al. (2004). Multiple ebola virus transmission events and rapid decline of central African wildlife. Science, 303(5656), 387–90.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution and Inheritance. Cambridge, MA: Belknap Press.Google Scholar
McCallum, H. & Dobson, A. (2002). Disease, habitat fragmentation and conservation. Proceedings of the Royal Society B: Biological Sciences, 269(1504), 2041–9.CrossRefGoogle ScholarPubMed
Milton, K. (1996). Effects of bot fly (Alouattamyia baeri) parasitism on a free-ranging howler monkey (Alouatta palliata) population in Panama. Journal of Zoology, 239, 3963.Google Scholar
Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. (eds) (2013). Handbook of Mammals of the World. Vol. 3. Primates. Barcelona: Lynx Edicions.Google Scholar
Morand, S. & Guégan, J.-F. (2000). Distribution and abundance of parasite nematodes: ecological specialisation, phylogenetic constraint or simply epidemiology? Oikos, 88(3), 563–73.Google Scholar
Nguyen, N., Fashing, P. J., Boyd, D. A., et al. (2015). Fitness impacts of tapeworm parasitism on wild gelada monkeys at Guassa, Ethiopia. American Journal of Primatology, 77(5), 579–94.Google Scholar
Nunn, C. L. & Altizer, S. M. (2005). The global mammal parasite database: an online resource for infectious disease records in wild primates. Evolutionary Anthropology, 14(1), 12.Google Scholar
Nunn, C. L. & Dokey, A. T. W. (2006). Ranging patterns and parasitism in primates. Biology Letters, 2(3), 351–4.Google Scholar
Nunn, C. L. & Gillespie, T. R. (2016). Infectious disease and primate conservation. In: Wich, S. A. & Marshall, A. J. (eds) An Introduction to Primate Conservation. Oxford: Oxford University Press, pp. 157–73.Google Scholar
Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. (2003). Comparative tests of parasite species richness in primates. American Naturalist, 162(5), 597614.Google Scholar
Nunn, C. L., Altizer, S. M., Sechrest, W. & Cunningham, A. A. (2005). Latitudinal gradients of parasite species richness in primates. Diversity and Distributions, 11(3), 249–56.Google Scholar
Pedersen, A. B. & Fenton, A. (2007). Emphasizing the ecology in parasite community ecology. Trends in Ecology & Evolution, 22(3), 133–9.Google Scholar
Pedersen, A. B., Altizer, S., Poss, M., Cunningham, A. A. & Nunn, C. L. (2005). Patterns of host specificity and transmission among parasites of wild primates. International Journal for Parasitology, 35(6), 647–57.Google Scholar
Plowright, W. (1982). The effects of rinderpest and rinderpest control on wildlife in Africa. Symposium of the Zoological Society of London, 50, 128.Google Scholar
Poulin, R. (1998). Large-scale patterns of host use by parasites of freshwater fishes. Ecology Letters, 1(2), 118–28.CrossRefGoogle Scholar
Poulin, R. (1999). The intra- and interspecific relationships between abundance and distribution in helminth parasites of birds. Journal of Animal Ecology, 68(4), 719–25.CrossRefGoogle Scholar
Quigley, B. J. Z., Brown, S. P., Leggett, H. C., Scanlan, P. D. & Buckling, A. (2017). Within-host interference competition can prevent invasion of rare parasites. Parasitology, 145(6), 770–4.Google Scholar
R Core Team (2017). R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Redding, D. W., DeWolff, C. V. & Mooers, A. Ø. (2010). Evolutionary distinctiveness, threat status, and ecological oddity in primates. Conservation Biology, 24(4), 1052–8.Google Scholar
Rwego, I. B., Isabirye-Basuta, G., Gillespie, T. R. & Goldberg, T. L. (2008). Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conservation Biology, 22(6), 1600–7.Google Scholar
Salyer, S. J., Gillespie, T. R., Rwego, I. B., Chapman, C. A. & Goldberg, T. L. (2012). Epidemiology and molecular relationships of Cryptosporidium spp. in people, primates, and livestock from Western Uganda. PLoS Neglected Tropical Diseases, 6(4), e1597.Google Scholar
Salzer, J. S., Rwego, I. B., Goldberg, T. L., Kuhlenschmidt, M. S. & Gillespie, T. R. (2007). Giardia sp. and Cryptosporidium sp. infections in primates in fragmented and undisturbed forest in western Uganda. Journal of Parasitology, 93(2), 439–40.Google Scholar
Schmidt, K. A. & Ostfeld, R. S. (2001). Biodiversity and the dilution effect in disease ecology. Ecology, 82(3), 609–19.Google Scholar
Sibley, S. D., Lauck, M., Bailey, A. L., et al. (2014). Discovery and characterization of distinct simian pegiviruses in three wild African Old World Monkey species. PLoS One, 9(6), e98569.Google Scholar
Snaith, T. V., Chapman, C. A., Rothman, J. M. & Wasserman, M. D. (2008). Bigger groups have fewer parasites and similar cortisol levels: a multi-group analysis in red colobus monkeys. American Journal of Primatology, 70, 19.Google Scholar
Stephens, P. R., Pappalardo, P., Huang, S., et al. (2017). Global mammal parasite database version 2.0. Ecology, 98(5), 1476.Google Scholar
Strona, G. (2015). Past, present and future of host–parasite co-extinctions. International Journal for Parasitology: Parasites and Wildlife, 4(3), 431–41.Google Scholar
Tompkins, D. M. & Begon, M. (1999). Parasites can regulate wildlife populations. Parasitology Today, 15(8), 311–13.CrossRefGoogle ScholarPubMed
Tompkins, D. M., Dobson, A. P., Arneberg, P., et al. (2002). Parasites and host population dynamics. In: Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, J. A. P. & Dobson, A. P. (eds) The Ecology of Wildlife Diseases. Oxford: Oxford University Press, pp. 4562.CrossRefGoogle Scholar
Vaumourin, E., Vourc’h, G., Gasqui, P. & Vayssier-Taussat, M. (2015). The importance of multiparasitism: examining the consequences of co-infections for human and animal health. Parasites & Vectors, 8, 545.Google Scholar
Vázquez, D. P. & Simberloff, D. (2002). Ecological specialization and susceptibility to disturbance: conjectures and refutations. The American Naturalist, 159(6), 606–23.Google Scholar
Vitone, N. D., Altizer, S. & Nunn, C. L. (2004). Body size, diet and sociality influence the species richness of parasitic worms in anthropoid primates. Evolutionary Ecology Research, 6(2), 183–99.Google Scholar
Wich, S. A. & Marshall, A. J. (eds) (2016). An Introduction to Primate Conservation. Oxford: Oxford University Press.Google Scholar
Wilson, D. E. & Reeder, D. M. (eds) (2005). Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd edn. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wolfe, N. D., Dunavan, C. P. & Diamond, J. (2007). Origins of major human infectious diseases. Nature, 447(7142), 279.Google Scholar
Young, H., Griffin, R. H., Wood, C. L. & Nunn, C. L. (2013). Does habitat disturbance increase infectious disease risk for primates? Ecology Letters, 16(5), 656–63.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×