Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T06:00:13.360Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  14 April 2020

Didier Arnal
Affiliation:
Université de Bourgogne, France
Bradley Currey
Affiliation:
Saint Louis University, Missouri
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Representations of Solvable Lie Groups
Basic Theory and Examples
, pp. 440 - 444
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] ARNAL, D., FUJIWARA, H., LUDWIG, J., Opérateurs d’entrelacement pour les groupes de Lie exponentiels, Amer. J. Math. 118 (1996), 839876.Google Scholar
[2] ARNAL, D., CORTET, J. C., Représentations * des groupes exponentiels, J. Funct. Anal. 92 (1990), 103135.CrossRefGoogle Scholar
[3] ARNAL, D., CORTET, J. C., LUDWIG, J., Moyal product and representations of solvable Lie groups, J. Funct. Anal. 133 (1995), 402424.Google Scholar
[4] ARNAL, D., CURREY, B., DALI, B., Construction of canonical coordinates for exponential Lie groups, Trans. Amer. Math. Soc. 361 (2009), 62836348.CrossRefGoogle Scholar
[5] ARNAL, D., CURREY, B., DALI, B., Canonical coordinates for a class of solvable groups, Monat. Math. 166, No. 1 (2012), 1955.CrossRefGoogle Scholar
[6] ARNAL, D., DALI, B., CURREY, B., OUSSA, V., Regularity of abelian linear actions, Commutative and noncommutative harmonic analysis and applications 89–109, Contemporary mathematics 603, American Mathematical Society, Providence, RI, 2013.Google Scholar
[7] ARNAL, D., CURREY, B., OUSSA, V., Characteriɀation of regularity for a connected Abelian action, Monat. Math. 180, no. 1 (2016), 137.CrossRefGoogle Scholar
[8] ARNAL, D., CURREY, B., DALI, B., The Plancherel formula for an inhomogeneous vector group, J. Fourier Anal. Appl. 25 (2019), 28372876. (DOI 10.1007/100041-019-09684-y).Google Scholar
[9] AUSLANDER, L., KOSTANT, B., Polariɀations and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255354.Google Scholar
[10] BAGGETT, L., Representations of the Mautner group, I, Pac. Jour. Math. 77 (1978), 722.Google Scholar
[11] BERNAT, P., CONZE, N., DUFLO, M., LÉVY-NAHAS, M., RAIS, M., RENOUARD, P., VERGNE, M., Représentations des groupes de Lie résolubles. Monographies de la S.M.F., Dunod, Paris, 1972.Google Scholar
[12] BOURBAKI, N., Eléments de Mathématique, Groupes et Algèbres de Lie: Chapitre 1, Actualités scientifiques et industrielles 1285, Hermann, Paris, 1960.Google Scholar
[13] BROWN, I. D., Dual topology of a nilpotent Lie group, Ann. Sci. Ecole Norm. Sup. 6 (1973), 407411.Google Scholar
[14] CHARBONNEL, J.-Y., La formule de Plancherel pour un groupe de Lie résoluble connexe, Lect. Notes in Math. 587 (1977), 3276.Google Scholar
[15] CHARBONNEL, J.-Y., La formule de Plancherel pour un groupe de Lie résoluble connexe II, Math. Ann. 250 (1980), 134.Google Scholar
[16] CORWIN, L., GREENLEAF, F., Representations of nilpotent Lie groups and their applications; Part I: Basic theory and examples, Cambridge University Press, Cambridge, 1990.Google Scholar
[17] CURREY, B., An explicit Plancherel formula for completely solvable Lie groups, Mich. Math. J. 38 (1991), 7587.CrossRefGoogle Scholar
[18] CURREY, B., The structure of the space of coadjoint orbits of an exponential solvable Lie group, Trans. Amer. Math. Soc. 332 (1992), 241269.Google Scholar
[19] CURREY, B., A continuous trace composition sequence for C(G), where G is an exponential sovlable Lie group, Math. Nachr. 159 (1992), 189212.CrossRefGoogle Scholar
[20] CURREY, B., Explicit orbital parameters and the Plancherel measure for exponential Lie groups, Pac. J. Math. 219 (2005), 97138.Google Scholar
[21] CURREY, B., Decomposition and multiplicities for quasiregular representations of algebraic solvable Lie groups, J. Lie Theory 19 (2009), 557612.Google Scholar
[22] CURREY, B., FÜHR, H., OUSSA, V., A classification of continuous wavelet transforms in dimension three, Appl. Comput. Harmon. Anal. 46, no. 3 (2019), 500543.Google Scholar
[23] DIXMIER, J., Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1957.Google Scholar
[24] DIXMIER, J., L’application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. Fr. 85 (1957), 113121.Google Scholar
[25] DIXMIER, J., Sur les groupes de Lie nilpotents I, Amer. J. Math. 81 (1959), 160170.Google Scholar
[26] DIXMIER, J., Sur les groupes de Lie nilpotents II, Bulletin de la S.M.F. 85 (1957), 325388.Google Scholar
[27] DIXMIER, J., Groupes de Lie nilpotents III, Canad. J. Math. 10 (1958), 321348.Google Scholar
[28] Dixmier, J., Sur les représentations unitaires des groupes de Lie nilpotents V, Bulletin de la S.M.F. 87 (1959), 6579.Google Scholar
[29] DIXMIER, J., C Algebras, North Holland, Amsterdam, 1982.Google Scholar
[30] DIXMIER, J., Malliavin, P., Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. 102 (1978), 307330.Google Scholar
[31] DUFLO, M., Caractères des groupes de Lie résolubles, Bourbaki seminar, Vol. 1979/80, 257272, Lecture notes in mathematics, 842, Springer, Berlin–New York, 1981.Google Scholar
[32] DUFLO, M., MOORE, C., On the regular representation of a nonunimodular locally compact group, J. Funct. Anal. 21 (1976), 209243.Google Scholar
[33] DUFLO, M., PEDERSEN, N. V., VERGNE, M., Eds., The orbit method in representation theory, Proceedings of a conference held in Copenhagen, Aug.–Sept. 1988, Birkhäuser (Basel), Progress in mathematics, 1990.Google Scholar
[34] DUFLO, M., RAÏS, M., Sur l’analyse harmonique sur les groupes de Lie résolubles, Annales Sci. de l’E.N.S. 9 (1976), 107144.Google Scholar
[35] DUFLO, M., VERGNE, M., Une propriété de la représentation coadjointe d’une algèbres de Lie, C. R. Acad. Sci. 268 (1969), 583585.Google Scholar
[36] EFFROS, E., Transformation groups and C-algebras, Ann. Math. 81, no. 2 (1965), 3855.Google Scholar
[37] ERNEST, J., A decomposition theory for unitary representations of locally compact groups, Trans. Amer. Math. Soc. 104 (1962), 252277.Google Scholar
[38] FARAUT, J., Analysis on Lie groups; An introduction, Cambridge studies in advanced mathematics 110, Cambridge University Press, Cambridge, 2008.Google Scholar
[39] FOLLAND, G., Harmonic analysis in phase space, Annals of mathematics studies (AM-122), Princeton University Press, Princeton, NJ, 1989.Google Scholar
[40] FOLLAND, G., A course in abstract harmonic analysis, Studies in advanced mathematics, CRC Press, Boca Raton, FL, 1995.Google Scholar
[41] FÜHR, H., Generaliɀed Calderón conditions and regular orbit spaces, Coll. Math. 120 (2010), 103126.Google Scholar
[42] FUJIWARA, H., On holomorphically induced representations of exponential groups, Proc. Japan Acad. 52, no. 8 (1976), 420423.Google Scholar
[43] FUJIWARA, H., Représentations monomiales des groupes résolubles, The orbit method in representation theory, Proceedings of a conference held in Copen- hagen, Aug.–Sept. 1988. 6184, Birkhäuser (Basel), Progress in mathematics, 1990.Google Scholar
[44] GLIMM, J., Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124138.Google Scholar
[45] GODEMENT, R., Sur la théorie des représentations unitaires, Annals of Math. 53 (1951), 68124.Google Scholar
[46] GODEMENT, R., Théorie des caractères II: définitions et propriétés générales des caractères, Annals of Math. 59 (1954), 6385.Google Scholar
[47] GRÖCHENIG, K., KANIUTH, E., TAYLOR, K. F., Compact open sets in duals and projections in L1-algebras of certain semi-direct product groups, Math. Proc. Camb. Phil. Soc. 111 (1992), 545556.Google Scholar
[48] HELGASON, S., Differential geometry, Lie groups, and symmetric spaces, Graduate studies in mathematics 34, American Mathematical Society, Providence, RI, 2001.Google Scholar
[49] JACOBSON, N., Basic Algebra I, W. H. Freeman and Company, New York, 2nd edition, 1985.Google Scholar
[50] KANIUTH, E., TAYLOR, K. F., Induced representations of locally compact groups, Cambridge tracts in mathematics 197, Cambridge University Press, Cambridge, 2013.Google Scholar
[51] KATO, T., Perturbation theory for linear operators, Reprint of the 1980 edition. Classics in mathematics. Springer-Verlag, Berlin, 1995.Google Scholar
[52] KIRILLOV, A. A., Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk. 17 (1962), 57110.Google Scholar
[53] KIRILLOV, A. A., Lectures on the orbit method, Graduate studies in Mathematics 64, American Mathematical Society, 2004.Google Scholar
[54] KLEPPNER, A., LIPSMAN, R., The Plancherel formula for group extensions, Ann. Sci. Ec. Norm. Sup. 4th edition 5, no. 3 (1972), 459516.Google Scholar
[55] KLEPPNER, A., LIPSMAN, R., The Plancherel formula for group extensions II, Ann. Sci. Ec. Norm. Sup. 4th edition 6, no. 1 (1973), 103132.Google Scholar
[56] KOBAYASHI, S., NOMIZU, K., Foundations of differential Geometry, vol. II, Inter- science tracts in pure and applied mathematics, No. 15, Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York/London/Sydney, 1969.Google Scholar
[57] KOSTANT, B., Quantiɀation and unitary representations, 87–208, Lectures in modern analysis and applications III, 170, Springer-Verlag, Berlin, 1970.Google Scholar
[58] LARSON, D. R., SCHULZ, E., SPEEGLE, D., TAYLOR, K. F., Explicit cross-sections of singly generated group actions, Harmonic analysis and applications 209–230, In Honor of John Benedetto, Heil, C., Ed., Birkhauser, Boston, 2006.Google Scholar
[59] LIN, Y.-F., LUDWIG, J., The C∗-algebras of ax + b-like groups, J. Funct. Anal. 259 (2010), 104130.Google Scholar
[60] LEPTIN, H., Darstellungen verallgemeinerter L1-Algebren, Invent. Math. 5 (1968), 192215.Google Scholar
[61] LEPTIN, H., LUDWIG, J., Unitary representation theory of exponential Lie groups, De Gruyter Expositions in Mathematics, De Gruyter, Berlin, 2011.Google Scholar
[62] LIPSMAN, R., The CCR property for algebraic groups, Amer. J. Math. 97 (1975), 741752.CrossRefGoogle Scholar
[63] LUDWIG, J., TUROWSKA, L., The C-algebras of the Heisenberg group and of thread-like Lie groups, Math. Z. 268 (2011), 897930.CrossRefGoogle Scholar
[64] MACKEY, G. W., Imprimitivity for representations of locally compact groups I, Proc. Nat. Acad. Sci. USA 35 (1949), 537545.Google Scholar
[65] MACKEY, G. W., On induced representations of groups, Amer. J. Math. 73 (1951), 576592.Google Scholar
[66] MACKEY, G. W., Induced representations of locally compact groups, Annals of Math. 55 (1952), 101139.Google Scholar
[67] MACKEY, G. W., Induced representations of locally compact groups II: the Frobenius reciprocity theorem, Annals of Math. 58 (1953), 193221.Google Scholar
[68] MACKEY, G. W., Unitary representations of group extensions, Acta Math. 99 (1958), 265311.Google Scholar
[69] MAUTNER, F. I., Unitary representations of locally compact groups I, Annals of Math. 51 (1950), 125.Google Scholar
[70] MAUTNER, F. I., Unitary representations of locally compact groups II, Annals of Math. 52 (1950), 528556.Google Scholar
[71] MOORE, C. C., WOLF, J., Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc. 185 (1973), 445462.Google Scholar
[72] OUSSA, V., Frames arising from irreducible solvable actions, J. Funct. Anal. 274 (2018), 12021254.Google Scholar
[73] PEDERSEN, N. V., Semicharacters and solvable Lie groups, Math. Ann. 247 (1980), 191244.Google Scholar
[74] PEDERSEN, N. V., On the characters of exponential solvable Lie groups, Ann. Sci. Écoles Norm. Sup. 17, no. 4 (1984), 129.Google Scholar
[75] PEDERSEN, N. V., On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications I, Math. Ann. 281 (1988), 633669.Google Scholar
[76] PEDERSEN, N. V., Geometric quantiɀation and the universal enveloping algebra of a nilpotent Lie group, Trans. Amer. Math. Soc. 315 (1989), 511563.Google Scholar
[77] PENNEY, R., Abstract Plancherel theorems and a Frobenius reciprocity theorem, J. Funct. Anal. 18 (1975), 177190.Google Scholar
[78] PENNEY, R., The structure of rational homogeneous domains in Cn, Annals of Math. 126, No. 2 (1987), 389414.Google Scholar
[79] PUKANSZKY, L., Lecons sur les représentations des groups, Dunod, Paris, 1967.Google Scholar
[80] PUKANSZKY, L., On the theory of exponential groups, Trans. Amer. Math. Soc. 126 (1967), 487507.Google Scholar
[81] PUKANSZKY, L., On the unitary representations of exponential groups, J. Funct. Anal. 2 (1) (1968), 73113.Google Scholar
[82] PUKANSZKY, L., Unitary representations of solvable Lie groups, Annales Sci. de l’E.N.S. 4 (1971), 457608.Google Scholar
[83] PUKANSZKY, L., The primitive ideal space of solvable Lie groups, Invent. Math. 22 (1973), 75118.Google Scholar
[84] PUKANSZKY, L., Characters of connected Lie groups, Acta Math. 133 (1974), 81137.Google Scholar
[85] ROSENBERG, J., Square integrable factor representations of locally compact groups, Trans. Amer. Math. Soc. 237 (1978), 133.Google Scholar
[86] RUDIN, W., Real and complex analysis, McGraw-Hill, New York, 1966.Google Scholar
[87] TAKENOUCHI, O., Sur la facteur-représentation d’un groupe de Lie résoluble de type (E), Math. J. Okayama Univ. 7 (1957), 151161.Google Scholar
[88] VARADARAJAN, V. S., Lie groups, Lie algebras, and their representations, Graduate texts in mathematics, 102, Springer, Berlin, 1984.Google Scholar
[89] VERGNE, M., Construction de sous-algèbres subordonnées à un élément du dual d’une algèbre de Lie résoluble, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), 173175.Google Scholar
[90] VERGNE, M., La structure de Poisson sur l’algèbre symmétrique d’une algèbre de Lie nilpotente, Bull. Soc. Math. France 100 (1972), 301335.CrossRefGoogle Scholar
[91] NEUMANN, J. VON, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102 (1930), 370427.Google Scholar
[92] NEUMANN, J. VON, On rings of operators: Reduction theory, Annals of Math. 50 (1949), 401485.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Didier Arnal, Université de Bourgogne, France, Bradley Currey, Saint Louis University, Missouri
  • Book: Representations of Solvable Lie Groups
  • Online publication: 14 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108552288.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Didier Arnal, Université de Bourgogne, France, Bradley Currey, Saint Louis University, Missouri
  • Book: Representations of Solvable Lie Groups
  • Online publication: 14 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108552288.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Didier Arnal, Université de Bourgogne, France, Bradley Currey, Saint Louis University, Missouri
  • Book: Representations of Solvable Lie Groups
  • Online publication: 14 April 2020
  • Chapter DOI: https://doi.org/10.1017/9781108552288.008
Available formats
×