Published online by Cambridge University Press: 05 August 2012
Introduction
Spatial biodiversity patterns are tightly related to the patterns of spatial distribution of individual species. It has been recognized that the spatial distribution of individuals is never random nor homogeneous within some well-defined clusters but is aggregated on many spatial scales: individuals form clusters which themselves are aggregated into larger clusters and so on. The most useful way to capture these patterns is with fractal geometry, which treats such patterns as self-similar sets (Kunin, 1998; Halley et al., 2004). Indeed, it has been shown that species spatial distribution is often close to fractal (Virkkala, 1993; Condit et al., 2000; Ulrich & Buszko, 2003) and that the assumption of fractality of species spatial distribution is appropriate for deriving multispecies macroecological patterns, namely the species–area relationship (Harte, Kinzig & Green, 1999; Šizling & Storch, 2004). By contrast, species sometimes reveal distributions that deviate from strict fractality (Hartley et al., 2004; He & Condit, this volume; Lennon et al., this volume). More importantly, although there are several ways in which fractal distributions could emerge (Halley et al., 2004), there is no strong biological reason why species spatial distribution should be exactly fractal, i.e. it is unclear which biological processes should produce fractal distribution.
Here we show that species spatial distributions which are very close to fractal can emerge from random processes leading to aggregation on several spatial scales. These processes have relatively straightforward biological interpretation and the spatial patterns they produce are in many parameters effectively undistinguishable from classical fractals.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.