Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T22:52:54.023Z Has data issue: false hasContentIssue false

Chapter 14 - Neuroimaging in Pregnancy and Epilepsy

Published online by Cambridge University Press:  19 December 2024

Esther Bui
Affiliation:
Toronto Western Hospital
P. Emanuela Voinescu
Affiliation:
Brigham & Women's Hospital, Boston, MA
Get access

Summary

Neuroimaging plays an important role in workup of pregnant patients with seizures. Seizures in pregnant and postpartum women may be due to pre-existing epilepsy, the initial manifestation of a primary central nervous system–related problem, or a neurologic problem unique to pregnancy and the postpartum period. Multidisciplinary decision making is required when selecting the most suitable neuroimaging technique and the specific protocol. The different clinical scenarios in a pregnant patient with seizures are reviewed and suitable MR protocols are discussed for each clinical context. Safety considerations for CT and MR as well as iodinated and gadolinium-based contrasts are summarized, together with the most recent recommendations.

Type
Chapter
Information
Women with Epilepsy
A Practical Management Handbook
, pp. 241 - 256
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Trop, I, Tremblay, E, Thérasse, E, Thomassin-Naggara, I. Quality initiatives: Guidelines for use of medical imaging during pregnancy and lactation. Radiographics. 2012;32:897911. https://doi.org/10.1148/rg.323115120.Google Scholar
Klein, JP, Hsu, L. Neuroimaging during pregnancy. Semin Neurol. 2011;31:361–73. https://doi.org/10.1055/s-0031-1293535.CrossRefGoogle ScholarPubMed
McCollough, CH, Schueler, BA, Atwell, TD, et al. Radiation exposure and pregnancy: When should we be concerned? Radiographics. 2007;27:908–9. https://doi.org/10.1148/rg.274065149.CrossRefGoogle ScholarPubMed
Stuebe, A, Auguste, T. ACOG Committee Opinion. Obstet Gynecol. 2018;131:140–50.Google Scholar
American College of Radiology Committee on Drugs and Contrast Media. ACR Manual on Contrast Media. Reston, VA: American College of Radiology Committee on Drugs and Contrast Media; n.d.Google Scholar
Ziskin, MC, Morrissey, J. Thermal thresholds for teratogenicity, reproduction, and development. Int J Hyperthermia. 2011;27:374–87. https://doi.org/10.3109/02656736.2011.553769.CrossRefGoogle ScholarPubMed
Hand, JW, Li, Y, Thomas, EL, Rutherford, MA, Hajnal, J. Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med. 2006;55:883–93. https://doi.org/10.1002/mrm.20824.CrossRefGoogle ScholarPubMed
Jabehdar Maralani, P, Kapadia, A, Liu, G, et al. Canadian Association of Radiologists recommendations for the safe use of MRI during pregnancy. Can Assoc Radiol J. 2022;73:5667. https://doi.org/10.1177/08465371211015657.CrossRefGoogle ScholarPubMed
Reeves, MJ, Brandreth, M, Whitby, EH, et al. Neonatal cochlear function: Measurement after exposure to acoustic noise during in utero MR imaging. Radiology. 2010;257:802–9. https://doi.org/10.1148/radiol.10092366.CrossRefGoogle ScholarPubMed
Strizek, B, Jani, JC, Mucyo, E, et al. Safety of MR imaging at 1.5 T in fetuses: A retrospective case-control study of birth weights and the effects of acoustic noise. Radiology. 2015;275:530–7. https://doi.org/10.1148/radiol.14141382.CrossRefGoogle ScholarPubMed
Jaimes, C, Delgado, J, Cunnane, MB, et al. Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol. 2019;49:3745. https://doi.org/10.1007/s00247-018-4261-2.CrossRefGoogle ScholarPubMed
Ray, JG, Vermeulen, MJ, Bharatha, A, Montanera, WJ, Park, AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316:952–61. https://doi.org/10.1001/jama.2016.12126.CrossRefGoogle ScholarPubMed
Kanal, E, Barkovich, AJ, Bell, C, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37:501–30. https://doi.org/10.1002/jmri.24011.Google ScholarPubMed
Ray, JG, Vermeulen, MJ, Bharatha, A, Montanera, WJ, Park, AL. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316:952–61. https://doi.org/10.1001/jama.2016.12126.CrossRefGoogle ScholarPubMed
Cipolla, MJ, Kraig, RP. Seizures in women with preeclampsia: Mechanisms and management. Fetal Matern Med Rev. 2011;22:91108. https://doi.org/10.1017/S0965539511000040.CrossRefGoogle ScholarPubMed
Ay, H, Buonanno, FS, Schaefer, PW, et al. Posterior leukoencephalopathy without severe hypertension: Utility of diffusion-weighted MRI. Neurology. 1998;51:1369–76. https://doi.org/10.1212/wnl.51.5.1369.CrossRefGoogle ScholarPubMed
Bartynski, WS, Sanghvi, A. Neuroimaging of delayed eclampsia. Report of 3 cases and review of the literature. J Comput Assist Tomogr. 2003;27:699713. https://doi.org/10.1097/00004728-200309000-00007.CrossRefGoogle ScholarPubMed
Van Loenen, NTVM, Hintzen, RQ, de Groot, CJM. New onset seizures in pregnancy caused by an unexpected neurologic disorder. Eur J Obstet Gynecol Reprod Biol. 2004;117:109–11. https://doi.org/10.1016/j.ejogrb.2003.09.046.CrossRefGoogle ScholarPubMed
Bartynski, WS. Posterior reversible encephalopathy syndrome, part 1: Fundamental imaging and clinical features. AJNR Am J Neuroradiol. 2008;29:1036–42. https://doi.org/10.3174/ajnr.A0928.Google ScholarPubMed
Trommer, BL, Homer, D, Mikhael, MA. Cerebral vasospasm and eclampsia. Stroke. 1988;19:326–9. https://doi.org/10.1161/01.str.19.3.326.CrossRefGoogle ScholarPubMed
Dekker, GA, Sibai, BM. Etiology and pathogenesis of preeclampsia: Current concepts. Am J Obstet Gynecol. 1998;179:1359–75. https://doi.org/10.1016/s0002-9378(98)70160-7.CrossRefGoogle ScholarPubMed
Schwartz, RB, Feske, SK, Polak, JF, et al. Preeclampsia-eclampsia: Clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology. 2000;217:371–6. https://doi.org/10.1148/radiology.217.2.r00nv44371.CrossRefGoogle ScholarPubMed
Paarlberg, KM, De Jong, CL, Van Geijn, HP, et al. Vasoactive mediators in pregnancy-induced hypertensive disorders: A longitudinal study. Am J Obstet Gynecol. 1998;179:1559–64. https://doi.org/10.1016/s0002-9378(98)70024-9.CrossRefGoogle ScholarPubMed
Brass, SD, Copen, WA. Neurological disorders in pregnancy from a neuroimaging perspective. Semin Neurol. 2007;27:411–24. https://doi.org/10.1055/s-2007-991123.CrossRefGoogle ScholarPubMed
Junewar, V, Verma, R, Sankhwar, PL, et al. Neuroimaging features and predictors of outcome in eclamptic encephalopathy: A prospective observational study. American Journal of Neuroradiology. 2014;35:1728–34. https://doi.org/10.3174/ajnr.A3923.CrossRefGoogle ScholarPubMed
McKinney, AM, Short, J, Truwit, CL, et al. Posterior reversible encephalopathy syndrome: Incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol. 2007;189:904–12. https://doi.org/10.2214/AJR.07.2024.CrossRefGoogle ScholarPubMed
Hefzy, HM, Bartynski, WS, Boardman, JF, Lacomis, D. Hemorrhage in posterior reversible encephalopathy syndrome: Imaging and clinical features. AJNR Am J Neuroradiol. 2009;30:1371–9. https://doi.org/10.3174/ajnr.A1588.CrossRefGoogle ScholarPubMed
Schaefer, PW, Buonanno, FS, Gonzalez, RG, Schwamm, LH. Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia. Stroke. 1997;28:1082–5. https://doi.org/10.1161/01.str.28.5.1082.CrossRefGoogle Scholar
Schwartz, RB, Mulkern, R V, Gudbjartsson, H, Jolesz, F. Diffusion-weighted MR imaging in hypertensive encephalopathy: Clues to pathogenesis. AJNR Am J Neuroradiol. 1998;19:859–62.Google ScholarPubMed
Alvis, JS, Hicks, RJ. Pregnancy-induced acute neurologic emergencies and neurologic conditions encountered in pregnancy. Semin Ultrasound CT MR. 2012;33:4654. https://doi.org/10.1053/j.sult.2011.09.002.CrossRefGoogle ScholarPubMed
Acheson, J, Malik, A. Cerebral venous sinus thrombosis presenting in the puerperium. Emerg Med J. 2006;23:e44. https://doi.org/10.1136/emj.2006.035550.CrossRefGoogle ScholarPubMed
Bartynski, WS. Posterior reversible encephalopathy syndrome, part 2: Controversies surrounding pathophysiology of vasogenic edema. AJNR Am J Neuroradiol. 2008;29:1043–9. https://doi.org/10.3174/ajnr.A0929.Google ScholarPubMed
Knopp, U, Kehler, U, Rickmann, H, Arnold, H, Gliemroth, J. Cerebral haemodynamic pathologies in HELLP syndrome. Clin Neurol Neurosurg. 2003;105:256–61. https://doi.org/10.1016/s0303-8467(03)00043-x.CrossRefGoogle ScholarPubMed
Stone, JH. HELLP syndrome: Hemolysis, elevated liver enzymes, and low platelets. JAMA. 1998;280:559–62. https://doi.org/10.1001/jama.280.6.559.CrossRefGoogle ScholarPubMed
Srinivasan, K. Puerperal cerebral venous and arterial thrombosis. Semin Neurol. 1988;8:222–5. https://doi.org/10.1055/s-2008-1041381.CrossRefGoogle ScholarPubMed
Cantú, C, Barinagarrementeria, F. Cerebral venous thrombosis associated with pregnancy and puerperium: Review of 67 cases. Stroke. 1993;24:1880–4. https://doi.org/10.1161/01.str.24.12.1880.CrossRefGoogle ScholarPubMed
Lanska, DJ, Kryscio, RJ. Risk factors for peripartum and postpartum stroke and intracranial venous thrombosis. Stroke. 2000;31:1274–82. https://doi.org/10.1161/01.str.31.6.1274.CrossRefGoogle ScholarPubMed
Angelov, A. Intracranial venous thrombosis in relation to pregnancy and delivery. Pathol Res Pract. 1989;185:843–7. https://doi.org/10.1016/S0344-0338(89)80284-5.CrossRefGoogle ScholarPubMed
Bartynski, WS, Boardman, JF. Distinct imaging patterns and lesion distribution in posterior reversible encephalopathy syndrome. AJNR Am J Neuroradiol. 2007;28:1320–7. https://doi.org/10.3174/ajnr.A0549.CrossRefGoogle ScholarPubMed
Provenzale, JM, Joseph, GJ, Barboriak, DP. Dural sinus thrombosis: Findings on CT and MR imaging and diagnostic pitfalls. AJR Am J Roentgenol. 1998;170:777–83. https://doi.org/10.2214/ajr.170.3.9490973.CrossRefGoogle Scholar
Ducreux, D, Oppenheim, C, Vandamme, X, et al. Diffusion-weighted imaging patterns of brain damage associated with cerebral venous thrombosis. AJNR Am J Neuroradiol. 2001;22:261–8.Google ScholarPubMed
Mullins, ME, Grant, PE, Wang, B, Gonzalez, RG, Schaefer, PW. Parenchymal abnormalities associated with cerebral venous sinus thrombosis: Assessment with diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2004;25:1666–75.Google ScholarPubMed
Call, GK, Fleming, MC, Sealfon, S, et al. Reversible cerebral segmental vasoconstriction. Stroke. 1988;19:1159–70. https://doi.org/10.1161/01.str.19.9.1159.CrossRefGoogle ScholarPubMed
Neudecker, S, Stock, K, Krasnianski, M. Call–Fleming postpartum angiopathy in the puerperium: A reversible cerebral vasoconstriction syndrome. Obstet Gynecol. 2006;107:446–9. https://doi.org/10.1097/01.AOG.0000187945.61146.e6.CrossRefGoogle ScholarPubMed
Singhal, AB. Postpartum angiopathy with reversible posterior leukoencephalopathy. Arch Neurol. 2004;61:411–16. https://doi.org/10.1001/archneur.61.3.411.CrossRefGoogle ScholarPubMed
Ursell, MR, Marras, CL, Farb, R, et al. Recurrent intracranial hemorrhage due to postpartum cerebral angiopathy: Implications for management. Stroke. 1998;29:1995–8. https://doi.org/10.1161/01.str.29.9.1995.CrossRefGoogle ScholarPubMed
Zak, IT, Dulai, HS, Kish, KK. Imaging of neurologic disorders associated with pregnancy and the postpartum period. Radiographics: A Review Publication of the Radiological Society of North America. 2007;27:95108. https://doi.org/10.1148/rg.271065046.CrossRefGoogle ScholarPubMed
Smith, JS, Quiñones-Hinojosa, A, Harmon-Smith, M, Bollen, AW, McDermott, MW. Sex steroid and growth factor profile of a meningioma associated with pregnancy. Canadian Journal of Neurological Sciences Le Journal Canadien Des Sciences Neurologiques. 2005;32:122–7. https://doi.org/10.1017/s0317167100017017.Google ScholarPubMed
Kobayashi, T, Kida, Y, Yoshida, J, Shibuya, N, Kageyama, N. Brain metastasis of choriocarcinoma. Surgical Neurology. 1982;17:395403. https://doi.org/10.1016/S0090-3019(82)80002-5.CrossRefGoogle ScholarPubMed
Pallud, J, Mandonnet, E, Deroulers, C, et al. Pregnancy increases the growth rates of World Health Organization grade II gliomas. Ann Neurol. 2010;67:398404. https://doi.org/10.1002/ana.21888.CrossRefGoogle ScholarPubMed
Larner, AJ, Smith, SJ, Duncan, JS, Howard, RS. Late-onset Rasmussen’s syndrome with first seizure during pregnancy. Eur Neurol. 1995;35:172. https://doi.org/10.1159/000117116.CrossRefGoogle ScholarPubMed
Hoeldtke, NJ, Floyd, D, Werschkul, JD, Calhoun, BC, Hume, RF. Intracranial cavernous angioma initially presenting in pregnancy with new-onset seizures. Am J Obstet Gynecol. 1998;178:612–13. https://doi.org/10.1016/s0002-9378(98)70449-1.CrossRefGoogle ScholarPubMed
Aladdin, Y, Gross, DW. Refractory status epilepticus during pregnancy secondary to cavernous angioma. Epilepsia. 2008;49:1627–9. https://doi.org/10.1111/j.1528-1167.2008.01639.x.CrossRefGoogle ScholarPubMed
Pandian, JD, Venkateswaralu, K, Thomas, S V, Sarma, PS. Maternal and fetal outcome in women with epilepsy associated with neurocysticercosis. Epileptic Disord. 2007;9:285–91. https://doi.org/10.1684/epd.2007.0120.CrossRefGoogle ScholarPubMed
Mylonakis, E, Paliou, M, Hohmann, EL, Calderwood, SB, Wing, EJ. Listeriosis during pregnancy: A case series and review of 222 cases. Medicine. 2002;81:260–9. https://doi.org/10.1097/00005792-200207000-00002.CrossRefGoogle ScholarPubMed
Vézina, LG. MRI-negative epilepsy: Protocols to optimize lesion detection. Epilepsia. 2011;52 Suppl 4:25–7. https://doi.org/10.1111/j.1528-1167.2011.03147.x.CrossRefGoogle ScholarPubMed
Ladhani, NNN, Swartz, RH, Foley, N, et al. Canadian stroke best practice consensus statement: Acute stroke management during pregnancy. International Journal of Stroke. 2018;13:743–58. https://doi.org/10.1177/1747493018786617.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×