Published online by Cambridge University Press: 23 May 2010
The next paper, by Cartan and Serre, are the first announcement of the results of the French school on the method of killing homotopy groups (see §10). The end of the second note gives the flavour of practical calculations; the desire to be able to make calculations is important for motivation in this area. The prerequisites are a knowledge of elementary homotopy theory and of homology theory up to spectral sequences (see §§1, 4, 5 of the introduction).
TOPOLOGIE. – Espaces fibrés et groupes d'homotopie. I. Constructions générates. Note de MM. Henri Cartan et Jean-Pierre Serre, présentée par M. Jacques Hadamard.
Construction d'espaces fibrés (1) permetlant de le groupe d'homotopie πn(X) d'un espace X dont les πt(X) sont nuls pour i < n. Gette methode généralise celle qui consiste, pour n = 1, lorsque X est connexe, le groupe fondamental πt(X) en passant au revetement universel de X.
1. Soient X un espace connexe par arcs, x∈X, S(X) le complexe singulier de X. Pour tout entier q≥1, soit e>(X; x, q) le sous-complexe engendré par les simplexes dont les (q– I)-faces sont en x. Les groupes d'homologie (resp. cohomologie) de S(X; x, q) à coefficients dans G sont les groupes d'Eilenberg (2) de l'espace X en x; on les notera Hi(X; x, q, G), resp. Hi(X; x, q, G).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.