[1] A., Akbary, Z., Friggstad and R., Jurecevic, Explicit upper bounds for, Cont. Discrete Math. 2 (2007), 153–160.
[2] A., Akbary and Z., Friggstad, Superabundant numbers and the Riemann hypothesis, Amer. Math. Monthly 116 (2009), 273–275.
[3] L., Alaoglu and P., Erdőos, On highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944), 448–469.
[4] L., Alfors, Complex Analysis, 2nd edn, McGraw-Hill, 1966.
[5] T. M., Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.
[6] T. M., Apostol, Introduction to Analytic Number Theory, 2nd edn, Springer, 1990.
[7] R. J., Backlund, Über die nullstellen der Riemannschen Zetafunktion, Acta Math. 41 (1918), 345–375.
[8] R., Balasubramanian, S., Kanemitsu and M., Yoshimoto, Euler products, Farey series and the Riemann hypothesis II, Publ. Math. Debrecen 69 (2006), 1–16.
[9] W. W., Barrett, R. W., Forcade and A. D., Pollington, On the spectral radius of a (0,1) matrix related to Mertens' function, Linear Algebra Appl. 107 (1988), 151–159.
[10] B. C., Berndt, Ramanujan's Notebooks, Parts I–V, Springer, 1985–1998.
[11] M. V., Berry and J. P., Keating, The Riemann zeros and eigenvalue asymptotics, SIAM Rev. 41 (1999), 236–266.
[12] A. R., Booker, Turing and the Riemann hypothesis, Notices Amer. Math. Soc. 53 (2006), 1208–1211.
[13] P., Borwein, S., Choi, B., Rooney and A., Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, Springer, 2008.
[14] R. P., Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), 1361–1372.
[15] R. P., Brent, J. van, de Lune, H. J. J., te Riele and D. T., Winter, On the zeros of the Riemann zeta function in the critical strip II, Math. Comp. 39 (1982), 681–688.
[16] K., Briggs, Abundant numbers and the Riemann hypothesis, J. Exp. Math. 15 (2006), 251–256.
[17] K. A., Broughan, Structure of sectors of zeros of entire flows, Topology Proc. 27 (2002), 1–16.
[18] K. A., Broughan, Vanishing of the integral of the Hurwitz zeta function, Bull. Austral. Math. Soc. 65 (2002), 121–127.
[19] K. A., Broughan, Holomorphic flows on simply connected subsets have no limit cycles, Meccanica 38 (2003), 699–709.
[20] K. A., Broughan and A. R., Barnett, The holomorphic flow of the Riemann zeta function, Math. Comp. 73 (2004), 987–1004.
[21] K. A., Broughan, Holomorphic flow of the Riemann xi function, Nonlinearity 18 (2005), 1269–1294.
[22] K. A., Broughan and A. R., Barnett, Linear law for the logarithms of the Riemann periods at simple critical zeros, Math. Comp. 75 (2006), 891–902.
[23] K. A., Broughan and A. R., Barnett, Corrigendum to “The holomorphic flow of the Riemann zeta function”, Math. Comp. 76 (2007), 2249–2250.
[24] K. A., Broughan, Extension of the Riemann ζ-function's logarithmic derivative positivity region to near the critical strip, Can. Math. Bull. 52 (2009), 186–194.
[25] K. A., Broughan and A. R., Barnett, Gram lines and the average of the real part of the Riemann zeta function, Math. Comp. 81 (2012) 1669–1679.
[26] K. A., Broughan, Website for phase portraits of the zeros of ζ(s) and ζ(s). www.math.waikato.ac.nz/∽kab.
[27] K. A., Broughan, J.-M., De Koninck, I., Katai and F., Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq. 15 (2012), art. 12.7.5.
[28] K. A., Broughan and D., Delbourgo, On the ratio of the sum of divisors and Euler's totient function I, J. Integer Seq. 16 (2013), art. 13.8.8 (17pp.).
[29] K. A., Broughan, K., Ford and F., Luca, On square values of the product of the Euler totient function and the sum of divisors function, Colloq. Math. 130 (2013), 127–137.
[30] K. A., Broughan and Q., Zhou, On the ratio of the sum of divisors and Euler's totient function II, J. Integer Seq. 17 (2014), art. 14.9.2 (22pp.).
[31] K. A., Broughan and T. S., Trudgian, Robin's inequality for 11-free integers, Integers 15 (2015), #A12 (5pp.).
[32] K. A., Broughan, Equivalents of the Riemann Hypothesis II: Analytic Equivalences, Cambridge University Press, 2017.
[33] J., Büthe, J., Franke, A., Jost and T., Kleinjung, A practical analytic method for calculating π(x), Preprint.
[34] G., Caveney, J.-L., Nicolas and J., Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann hypothesis, Integers 11 (2011), #A33 (10pp.).
[35] G., Caveney, J.-L., Nicolas and J., Sondow, On SA, CA and GA numbers, Ramanujan J. 29 (2012), 359–384.
[36] Y., Cheng, An explicit upper bound for the Riemann zeta-function near the line σ = 1, Rocky Mountain J. Math. 29 (1999), 115–140.
[37] Y., Cheng and S. W., Graham, Explicit estimates for the Riemann zeta function, Rocky Mountain J. Math. 34 (2004), 1261–1280.
[38] Y., Choie, N., Lichiardopol, P., Moree and P., Solé, On Robin's criterion for the Riemann hypothesis, J. Théor. Nombres Bordeaux 19 (2007), 357–372.
[39] S., Chowla, On abundant numbers, J. IndianMath. Soc. (2) 1 (1934), 41–44.
[40] J. B., Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. reine angew. Math. 399 (1989), 1–16.
[41] J. B., Conrey, L-functions and random matrices, in Mathematics Unlimited – 2001 and Beyond, pp. 331–352, Springer, 2001.
[42] H., Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss. Berlin 27 (1933), 830–837.
[43] H., Davenport, Multiplicative Number Theory, 3rd edn, Springer, 2000.
[44] M., Davis, Y., Matijasevič and J., Robinson, Hilbert's tenth problem: diophantine equations: positive aspects of a negative solution, in Mathematical Developments Arising from Hilbert Problems, Proc. Symp. Pure Math., XXVIII, De Kalb, IL, 1974, pp. 323–378. American Mathematical Society, 1976.
[45] A., Derbal, Grandes valeurs de la fonction σ(n)/σ*(n), C. R., Math. Acad. Sci. Paris 364 (2008), 125–128.
[46] L. E., Dickson, History of the Theory of Numbers, vol. I, Dover, 2005.
[47] R. D., Dixon and L., Schoenfeld, The size of the Riemann zeta-function at places symmetric with respect to the point 1/2, Duke Math. J. 33 (1966), 291–292.
[48] P., Dusart, Inégalités explicites pour ψ(X), θ(X), π(X) et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), 53–59.
[49] P., Dusart, The kth prime is greater than k(log k + loglog k − 1) for k ≥ 2, Math. Comp. 68 (1999), 411–415.
[50] P., Dusart, Estimates of some functions over primes without RH, Preprint, arXiv:1002.0442v1, 2010.
[51] H. M., Edwards, Riemann's Zeta Function, Academic Press, 1974; reprinted by Dover, 2001.
[52] P., Erdös, On the density of abundant numbers, J. London Math. Soc. 9 (1934), 278– 282.
[53] P., Erdös, On the normal number of prime factors of p − 1 and some related problems concerning Euler's ϕ-function, Quart. J. Math. 6 (1935), 205–213.
[54] P., Erdös, Some remarks on Euler's φ function, Acta Arith. 4 (1958), 10–19.
[55] P., Erdös and P., Turan, On some problems of a statistical group theory I, Z. Wahrscheinlichkeitstheorie verw. Geb. 4 (1965), 175–186.
[56] P., Erdös and J.-L., Nicolas, Repartition des nombres superabondants, Bull. Soc. Math. France 103 (1975), 65–90.
[57] L., Faber and H., Kadiri, New bounds for ψ(x), Math. Comp. 84 (2015), 1339–1357.
[58] K., Ford, The distribution of totients, Ramanujan J. 2 (1998), 67–151 (Paul Erdös memorial issue).
[59] K., Ford, Zero-free regions for the Riemann zeta function, in Number Theory for the Millennium II, Urbana, IL, 2000, pp. 25–56, A. K. Peters, 2002.
[60] K., Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. (3) 85 (2002), 565–633.
[61] K., Ford, F., Luca and C., Pomerance, Common values of the arithmetic functions ϕ and σ, Bull. London Math. Soc. 42 (2010), 478–488.
[62] K., Ford and P., Pollack, On common values of ϕ(n) and σ(n) I, Acta Math. Hungar. 133 (2011), 251–271.
[63] K., Ford and P., Pollack, On common values of ϕ(n) and σ(n) II, Algebra Number Theory 6 (2012), 1669–1696.
[64] J., Franel and E., Landau, Les suites de Farey et le probléme des nombres premiers, Göttinger Nachr. (1924), 198–206.
[65] J. A., Gallian, Contemporary Abstract Algebra, 5th edn, Houghton Mifflin, 2002.
[66] R., Garunkstis, On a positivity property of the Riemann ζ-function, Lithuanian Math. J. 43 (2002), 140–145.
[67] B. R., Gillespie, Extending Redheffer's matrix to arbitary arithmetic functions, Bachelor with Honors Thesis, Pennsylvania State University, 2011.
[68] X., Gourdon, The 1013 first zeros of the Riemann zeta function, and zeros computation at very large height, Preprint, 2004.
[69] T. H., Grönwall, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc. 14 (1913), 113–122.
[70] E., Grosswald, Oscillation theorems of arithmetical functions, Trans. Amer. Math. Soc. 126 (1967), 1–28.
[71] J. L., Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181–186.
[72] R. R., Hall and W. K., Hayman, Hyperbolic distance and distinct zeros of the Riemann zeta-function in small regions, J. reine angew. Math. 526 (2000), 35–59.
[73] G. H., Hardy, The average order of the arithmetical functions P(x) and Δ(x), Proc. London Math. Soc. 15 (1916), 192–213.
[74] G. H., Hardy and J. E., Littlewood The zeros of Riemann's zeta function on the real line, Math. Z. 10 (1921), 283–317.
[75] G. H., Hardy and J. M., Wright, An Introduction to the Theory of Numbers, 6th edn, Oxford University Press, 2008.
[76] D. R., Heath-Brown, Simple zeros of the Riemann zeta function on the critical line, Bull. London Math. Soc. 11 (1979), 17–18.
[77] D. R., Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64 (1992), 265–338.
[78] D. A., Hejhal and A. M., Odlyzko, Alan Turing and the Riemann zeta function, in Alan Turing – His Work and Impact, eds S. B., Cooper and J., van Leeuwen, Elsevier, 2012.
[79] G. A., Hiary and A. M., Odlyzko, The zeta function on the critical line: numerical evidence for moments and random matrix theory models, Math. Comp. 81 (2012), 1723–1752.
[80] A. E., Ingham, The Distribution of Prime Numbers, Cambridge University Press, 1932.
[81] A., Ivić, Two inequalities for the sum of divisors functions, Univ. Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. 7 (1977), 17–22.
[82] A., Ivić, Riemann Zeta Function: Theory and Applications, Dover, 2003.
[83] W.-J., Jang and S-H., Kwon, A note on Kadiri's explicit zero free region for the Riemann zeta function, J. Korean Math. Soc. 51 (2014), 1291–1304.
[84] H., Kadiri, Une région explicite sans zéros pour la fonction ζ de Riemann, Acta Arith. 117 (2005), 303–339.
[85] S., Kanemitsu and M., Yoshimoto, Farey series and the Riemann hypothesis, Acta Arith. 75 (1996), 351–374.
[86] S., Kanemitsu and M., Yoshimoto, Farey series and the Riemann hypothesis III, Ramanujan J. 1 (1997), 363–378.
[87] S., Kanemitsu and M., Yoshimoto, Euler products, Farey series and the Riemann hypothesis, Pub. Math. Debrecen 56 (2000), 431–449.
[88] A. A., Karatsuba and S. M., Voronin, Riemann zeta function (transl. from Russian by N. Koblitz), De Gruyter, 1994.
[89] N. M., Katz and P., Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1–26.
[90] N. M., Katz and P., Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, AMS Colloquium Publications, 45. American Mathematical Society, 1999.
[91] J. P., Keating and N. C., Snaith, Random matrix theory and ζ(1/2 + it), Comm. Math. Phys. 214 (2000), 57–89.
[92] D. E., Knuth, The Art of Computer Programming I: Fundamental Algorithms, 3rd edn, Addison-Wesley, 1997.
[93] H., von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), 159–182.
[94] H., von Koch, Über die Riemannsche Primzahlfunction, Math. Ann. 55 (1902), 440–464.
[95] J.-M., De Koninck and F., Luca, Analytic Number Theory: Exploring the Anatomy of Integers, American Mathematical Society, 2012.
[96] N. M., Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk 13 (1958), 185–192.
[97] T., Kotnik, The prime counting function and its analytic approximations, Adv. Comp. Math. 29 (2008), 55–70.
[98] J. C., Lagarias, On a positivity property of the Riemann ζ-function, Acta Arith. 99 (1999) 217–213.
[99] J. C., Lagarias, Errata: On a positivity property of the Riemann ζ-function, Acta Arith. 99 (1999) 765.
[100] J. C., Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), 534–543.
[101] J. C., Lagarias, Problem 10949, Amer. Math. Monthly 109 (2002), 569.
[102] J. C., Lagarias and W., Janous, A generous bound for divisor sums: problem 10949, Amer. Math. Monthly 111 (2004), 264–265.
[103] E., Landau, Über die Maximalordnung der Permutationen gegebenen Grades, Arch. Math. Phys. Ser. 3 5 (1903).
[104] E., Landau, Über einen satz von Tschebyschef, Math. Ann. 61 (1905), 527–550.
[105] E., Landau, Handbuch der lehre von der Verteilung der Primzahlen, 2nd edn, vols 1 and 2, Chelsea, 1953.
[106] S., Lang, Introduction to Transcendental Numbers, Addison-Wesley, 1966.
[107] N., Levinson and H. L., Montgomery, Zeros of the derivatives of the Riemann zetafunction, Acta Math. 133 (1974), 49–65.
[108] J. E., Littlewood, Quelques conséquences de l'hypothése que la fonction ζ(s) n'a pas de zéros dans le demi-plan ℜs > 1/2, C. R. Acad. Sci. Paris Sér. I Math. 158 (1912), 263–266.
[109] J. E., Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris Sér. I Math. 158 (1914), 1869–1872.
[110] E. R., Lorch, Spectral Theory, Oxford University Press, 1962.
[111] J. van, de Lune, H. J. J., te Riele and D. T., Winter, On the zeros of the Riemann zeta function in the critical strip IV, Math. Comp. 46 (1986), 667–681.
[112] J.-P., Massias, J.-L., Nicolas and G., Robin, Evaluation asymptotique de l'ordre maximum d'un element du groupe symétrique, Acta Arith. 50 (1988), 221–242.
[113] J.-P., Massias, J.-L., Nicolas and G., Robin, Effective bounds for the maximal order of an element in the symmetric group, Math. Comp. 53 (1989), 665–678.
[114] J.-P., Massias and G., Robin, Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux 8 (1996), 215–242.
[115] F., Mertens, Über einize asymptotische Gesetse der Zahlentheorie, J. reine angew. Math. 77 (1874), 46–62.
[116] M., Mikolás, Farey series and their connection with the prime number problem I, Acta Univ. Szeged. Sect. Sci. Math. 13 (1949), 93–117.
[117] M., Mikolás, Farey series and their connection with the prime number problem II, Acta Sci. Math. Szeged 14 (1951), 5–21.
[118] W., Miller, The maximum order of an element of a finite symmetric group, Amer. Math. Monthly 94 (1987), 497–506.
[119] H. L., Montgomery, The pair correlation of zeros of the zeta function, in Analytic Number Theory, Proc. Symp. Pure Math. XXIV, pp. 181–193, American Mathematical Society, 1973.
[120] F., Morain, Tables sur la fonction g(n), Département de Mathématiques, Université de Limoges, 1988.
[121] M. J., Mossinghoff and T. S., Trudgian, Non-negative trigonometric polynomials and a zero-free region for the Riemann zeta-function, Preprint, arXiv:1410.3926v1, 2014.
[122] S., Nazardonyavi and S., Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, Preprint, arXiv:1211.2147v3, 2013.
[123] S., Nazardonyavi and S., Yakubovich, Extremely abundant numbers and the Riemann hypothesis, J. Integer Seq. 17 (2014), art. 14.2.8 (23pp.).
[124] M. B., Nathanson, Elementary Methods in Number Theory, Springer, 2000.
[125] J.-L., Nicolas, Ordre maximal d'un element du groupe des permutations et ‘highly composite numbers’, Bull. Soc. Math. France 97 (1969), 129–191.
[126] J.-L., Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17 (1983), 375–388.
[127] J.-L., Nicolas, Small values of the Euler function and the Riemann hypothesis, Acta Arith. 155 (2012), 311–321.
[128] J.-L., Nicolas, Ramanujan, Robin, highly composite numbers, and the Riemann hypothesis, Preprint, arXiv:1211.6944v4, 2013.
[129] A. M., Odlyzko and H. J. J. te, Riele, Disproof of the Mertens' conjecture, J. reine angew. Math. 357 (1985), 138–160.
[130] A. M., Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. Comp. 48 (1987), 273–308.
[131] S. J., Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Studies in Advanced Mathematics 14, Cambridge University Press, 1988.
[132] D. J., Platt, Computing degree 1 L-functions rigorously, Ph.D. Thesis, University of Bristol, 2011.
[133] D. J., Platt, Computing π(x) analytically, Math. Comp. 84 (2015), 1521–1535.
[134] D. J., Platt and S. A., Trudgian, An improved explicit bound on |ζ(1/2 + it)|, J. Number Theory 147 (2015), 842–851.
[135] D. J., Platt and S. A., Trudgian, On the first sign change of θ(x) − x, Math. Comp. 85 (2016), 1539–1547.
[136] S., Ramanujan, Highly composite numbers (Part 1), Proc. London Math. Soc. 14 (1915), 347–409.
[137] S., Ramanujan, annotated by J.-L., Nicolas and G., Robin, Highly composite numbers (Part 2), Ramanujan J. 1 (1997), 119–153.
[138] R., Redheffer, Eine explizit lösbare Optimierungsaufgabe, in Numerische Methoden bei Optimierungsaufgaben, Band 3 (Tagung, Math. Forschungsinst., Oberwolfach, 1976), Int. Ser. Numer. Math., Vol. 36, pp. 213–216, Birkhäuser, 1977.
[139] H.-E., Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1, Math. Ann. 169 (1967), 97–101.
[140] B., Riemann, Gesammelte Werke, Teubner, 1893; reprinted by Dover, 1953.
[141] G., Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367–389.
[142] G., Robin, Grandes valeurs de la fonction sommes des diviseurs et hypotheses de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.
[143] J. B., Rosser, The n-th prime is greater than n log n, Proc. London Math. Soc. 45 (1938), 21–44.
[144] J. B., Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232.
[145] J. B., Rosser and L., Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.
[146] J. B., Rosser and L., Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x), Math. Comp. 29 (1975), 243–269.
[147] Z., Rudnick and P., Sarnak, Zeros of principal L-functions and random matrix theory. A celebration of John F. Nash, Jr., Duke Math. J. 81 (1996), 269–322.
[148] K., Sabbagh, The Riemann Hypothesis, Farrar, Straus and Giroux, 2003.
[149] B., Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer, 2001.
[150] J., Sándor, D. S., Mitrinović and B., Crstici, Handbook of Number Theory I, Springer, 2006.
[151] M., du Sautoy, The Music of the Primes, HarperCollins, 2003.
[152] E., Schmidt Über die Anzahl der Primzahlen unter gegebener Grenze, Math. Ann. 57 (1903), 195–204.
[153] L., Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x) II, Math. Comput. 30 (1976), 337–360.
[154] L., Schoenfeld, Corrigendum: Sharper bounds for the Chebyshev functions θ(x) and ψ(x) II, Math. Comput. 30 (1976), 900.
[155] D., Schumayer and D. A. W., Hutchinson, Physics of the Riemann hypothesis, Rev. Mod. Phys. 83 (2011), 307–330.
[156] S. M., Shah, An inequality for the arithmetic function g(x), J. Indian Math. Soc. 3 (1939), 316–318.
[157] S., Skews, On the difference π(x)−li(x), J. London Math. Soc. 8 (1933), 277–283.
[158] N. J. A., Sloan, Online Encyclopedia of Integer Sequences (OEIS), https://oeis.org.
[159] P., Solé and M., Planat, The Robin inequality for 7-free integers, Integers 11 (2011), #A65 (8pp.).
[160] K., Soundararajan, Moments of the Riemann zeta function, Annals Math. 170 (2009), 981–993.
[161] A., Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934), 514–521.
[162] R., Spira, An inequality for the Riemann zeta function, Duke Math. J. 32 (1965), 247– 250.
[163] R., Spira, Zeros of ζ (s) and the Riemann hypothesis, Illinois J. Math. 17 (1973), 147–152.
[164] A. I., Suriajaya, On the zeros of the k-th derivative of the Riemann zeta function under the Riemann hypothesis, Funct. Approx. Comment. Math. 53 (2015), 69–95.
[165] S. M., Szalay, On the maximal order in Sn and S *n, Acta Arith. 37 (1980), 321–331.
[166] G., Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.
[167] E. C., Titchmarsh and D. R., Heath-Brown, The Theory of the Riemann Zeta-Function, 2nd edn, Oxford University Press, 1986.
[168] T. S., Trudgian, Improvements to Turing's method, Math. Comp. 80 (2011), 2259–2279.
[169] T. S., Trudgian, An improved upper bound for the argument of the Riemann zetafunction on the critical line II, J. Number Theory 134 (2014), 280–292.
[170] T. S., Trudgian, The sum of the unitary divisor function, Publ. Inst. Math. (Belgrad) (N.S.) 97 (2015), 175–180.
[171] T. S., Trudgian, A short extension of two of Spira's results, J. Math. Inequalities 9 (2015), 795–798.
[172] T. S., Trudgian, Improvements to Turing's method II, Rocky Mountain J. Math. 46 (2016), 325–332.
[173] T. S., Trudgian, Updating the error term in the prime number theorem, Ramanujan J. 39 (2016), 225–234.
[174] A. M., Turing, A method for the calculation of the zeta-function, Proc. London Math. Soc. 48 (1943), 180–197.
[175] A. M., Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. 3 (1953), 99–117.
[176] I. M., Vinogradov, A new estimate for ζ(1 + it), Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 161–164.
[177] A., Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, 1963.
[178] S., Wedeniwski, Section 1.1 History, ZetaGrad website, www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html.
[179] A., Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund (1952), 252–265.
[180] H. S., Wilf, The Redheffer matrix of a partially ordered set, Electron. J. Combin. 11 (2004/2006), Research Paper 10 (5pp.).
[181] M., Yoshimoto, Farey series and the Riemann hypothesis II, Acta Math. Hungar. 78 (1998), 287–304.
[182] D., Zagier, The first 50 million prime numbers, Math. Intelligencer (1977), 7–19.
[183] S., Zegowitz, On the positive region of π(x) − li(x). Master's Thesis, University of Manchester, 2010.