References[Ad] J. F., Adams, Stable Homotopy and Generalized Homology, Univ. Chicago Press (1974).
[Al1] J., Alperin, Sylow intersections and fusion, J. Algebra, 6 (1967), 222–241.
[Al2] J., Alperin, Local Representation Theory, The Santa Cruz conference on finite groups, Proc. Symp. Pure Math., 37, Amer. Math. Soc., Providence (1980), 369–375.
[Al3] J. L., Alperin, Weights for finite groups, The Arcata Conference on Finite Groups, Proc. Sympos. Pure Math., 47, Amer. Math. Soc., Providence (1987), 369–379.
[ABG] J., Alperin, R., Brauer, and D., Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., 151 (1970), 1–261.
[AB] J. L., Alperin and M., Broué, Local methods in block theory, Ann. of Math., 110 (1979), 143–157.
[ABC] T., Altinel, A., Borovik, & G., Cherlin, Simple groups of finite Morley rank, Math. Surveys & Monogr., 145, American Math. Soc. (2008).
[AOV] K., Andersen, B., Oliver, & J., Ventura, Reduced, tame, and exotic fusion systems, preprint.
[A1] M., Aschbacher, A characterization of Chevalley groups over fields of odd order, Annals of Math., 106 (1975), 353-468.
[A2] M., Aschbacher, On finite groups of component type, Illinois J. Math., 19 (1975), 87-113.
[A3] M., Aschbacher, On finite groups of Lie type and odd characteristic, J. Algebra, 66 (1980), 400-424.
[A4] M., Aschbacher, Finite Group Theory, Cambridge Univ. Press (1986).
[A5] M., Aschbacher, Normal subsystems of fusion systems, Proc. London Math. Soc., 97 (2008), 239–271.
[A6] M., Aschbacher, The generalized Fitting subsystem of a fusion system, Memoirs Amer. Math. Soc., 209 (2011), nr. 986.
[A7] M., Aschbacher, Generation of fusion systems of characteristic 2-type, Invent. Math., 180 (2010), 225–299.
[A8] M., Aschbacher, S3-free 2-fusion systems, Proc. Edinburgh Math. Soc., (proceedings of the 2009 Skye conference on algebraic topology, group theory and representation theory, to appear).
[A9] M., Aschbacher, N-groups and fusion systems, preprint.
[AC] M., Aschbacher & A., Chermak, A group-theoretic approach to a family of 2-local finite groups constructed by Levi and Oliver, Annals of Math., 171 (2010), 881–978.
[ASm] M., Aschbacher and S., Smith, The Classification of the Quasithin Groups, American Mat. Soc., (2004).
[Ben]H., Bender, Finite groups with dihedral Sylow 2-subgroups, J. Algebra, 70 (1981), 216–228.
[BG] H., Bender and G., Glauberman, Characters of finite groups with dihedral Sylow 2-subgroups, J. Algebra, 70 (1981), 200–215.
[Be1] D., Benson, Representations and Cohomology I: Cohomology of Groups and Modules,Cambridge Univ. Press (1991).
[Be2] D., Benson, Representations and Cohomology II: Cohomology of Groups and Modules, Cambridge Univ. Press (1991).
[Be3] D., Benson, Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, Geometry and cohomology in group theory, London Math. Soc. Lecture notes ser. 252, Cambridge Univ. Press (1998). 10–23.
[Bo]R., Boltje, Alperin's weight conjecture in terms of linear source modules and trivial source modules, Modular representation theory of finite groups (Charlottesville, VA, 1998), de Gruyter, Berlin (2001), 147–155.
[BonD] V.M., Bondarenko, J.A., Drozd, The representation type of finite groupsZap. anchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 57 (1977) 24-41. English translation: J. Soviet Math., 20(1982), 2515–2528.
[Bf] P., Bousfield, On the p-adic completions of nonnilpotent spaces, Trans. Amer. Math. Soc., 331 (1992), 335–359.
[BK] P., Bousfield & D., Kan, Homotopy limits, completions, and localizations, Lecture notes in math., 304, Springer-Verlag (1972).
[Br1] R., Brauer, Investigations on group characters, Ann. of Math., (2) 42 (1941), 936–958.
[Br2] R., Brauer, Some applications of the theory of blocks of characters of finite groups IV, J. Algebra,17 (1971), 489–521.
[Br3] R., Brauer, On 2-blocks with dihedral defect groups, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, London (1974), 367–393.
[Br4] R., Brauer, On the structure of blocks of characters of finite groups, Proc. Second Intern. Conf. on Theory of Groups, Lecture Notes in Mathematics 372, Springer-Verlag, (1974).
[Bre] S., Brenner, Modular representations of p-groupsJ. Algebra, 15 (1970), 89-102.
[5a1] C., Broto, N., Castellana, J., Grodal, R., Levi, & B., Oliver, Subgroup families controlling p-local finite groups, Proc. London Math. Soc., 91 (2005), 325–354.
[5a2] C., Broto, N., Castellana, J., Grodal, R., Levi, & B., Oliver, Extensions of p-local finite groups, Trans. Amer. Math. Soc., 359 (2007), 3791-3858.
[BL] C., Broto & R., Levi, On spaces of self homotopy equivalences of p-completed classifying spaces of finite groups and homotopy group extensions, Topology, 41 (2002), 229–255.
[BLO1] C., Broto, R., Levi, & B., Oliver, Homotopy equivalences of p-completed classifying spaces of finite groups, Invent. Math., 151 (2003), 611–664.
[BLO2] C., Broto, R., Levi, & B., Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc., 16 (2003), 779–856.
[BLO3] C., Broto, R., Levi, & B., Oliver, Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups, Geometry and Topology, 11 (2007), 315-427.
[BLO4] C., Broto, R., Levi, & B., Oliver, A geometric construction of saturated fusion systems, An alpine anthology of homotopy theory (proceedings Arolla 2004), Contemp. math. 399 (2006), 11-39.
[BLO] C., Broto, R., Levi, & B., Oliver, The theory of p-local groups: A survey, Homotopy theory (Northwestern Univ. 2002), Contemp. math., 346, Amer. Math. Soc. (2004), 51–84.
[BM] C., Broto & J., Møller, Chevalley p-local finite groups, Algebr. & Geom. Topology, 7 (2007), 1809–1919.
[BMO] C., Broto, J., Møller, & B., Oliver, Equivalences between fusion systems of finite groups of Lie type, preprint.
[B2] M., Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque, 181-182 (1990) 61–92.
[BP1] M., Broué and L., Puig, A Frobenius theorem for blocks, Invent. Math., 56 (1980), no.2, 117–128.
[BP2] M., Broué and L., Puig, Characters and Local structures in G-Algebras, Journal of Algebra, 63, (1980), 51–59.
[Br] K., Brown, Cohomology of Groups, Springer-Verlag (1982).
[Bu] W., Burnside, The Theory of Groups of Finite Order, Cambridge Univ. Press (1897).
[Cm] N., Campbell, Pushing Up in Finite Groups, Thesis, Cal. Tech., (1979).
[Ca] G., Carlsson, Equivariant stable homotopy and Sullivan's conjecture, Invent. Math., 103 (1991), 497–525.
[CE] H., Cartan & S., Eilenberg, Homological Algebra, Princeton Univ. Press (1956).
[CL] N., Castellana & A., Libman, Wreath products and representations of p-local finite groups, Advances in Math., 221 (2009), 1302–1344.
[COS] A., Chermak, B., Oliver, & S., Shpectorov, The linking systems of the Solomon 2-local finite groups are simply connected, Proc. London Math. Soc., 97 (2008), 209–238.
[CP] M., Clelland & C., Parker, Two families of exotic fusion systems, J. Algebra, 323 (2010), 287–304.
[CPW]G., Cliff, W., Plesken, A., Weiss, Order-theoretic properties of the center of a block, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., 47, Part 1, Amer. Math. Soc., Providence, RI (1987), 413–420.
[Cr1] D., Craven, Control of fusion and solubility in fusion systems, J. Algebra, 323 (2010), 2429–2448.
[Cr2] D., Craven, The Theory of Fusion Systems: an Algebraic Approach, Cambridge Univ. Press (2011).
[Cr3] D., Craven, Normal subsystems of fusion systems, Journal London Math. Soc. (to appear).
[CG] D., Craven & A., Glesser, Fusion systems on small p-groups, Trans. Amer. Math. Soc. (to appear).
[CrEKL] D., Craven, C., Eaton, R., Kessar, M., Linckelmann, The structure of blocks with a Klein 4 defect group, Math. Z. (to appear).
[Cu] E., Curtis, Simplicial homotopy theory, Adv. in Math., 6 (1971), 107–209.
[CuR1] C. W., Curtis and I., Reiner. Representation theory of finite groups and associative algebras, Wiley-Interscience (1962).
[CuR2] C. W., Curtis and I., Reiner. Methods in representation theory, Vol. I, J. Wiley and Sons (1981).
[CuR3] C. W., Curtis and I., Reiner. Methods in representation theory, Vol. II, J. Wiley and Sons (1987).
[Da1] E.C., Dade, Blocks with cyclic defect groups, Ann. of Math., 84 (1966), 20–48.
[Da2] E.C., Dade, Counting characters in blocks I, Invent. Math., 109 (1992), no. 1, 187–210.
[Da3] E.C., Dade, Counting characters in blocks II, J. Reine Angew. Math., 448 (1994), 97–190.
[Da4] E.C., Dade, Counting characters in blocks, II.9, in Representation Theory of Finite Groups, Ohio State University Math Research Institute Publications, Vol. 6, de Gruyter, Berlin (1997), 45–59.
[DGMP1] A., Díaz, A., Glesser, N., Mazza, & S., Park, Control of transfer and weak closure in fusion systems, J. Algebra, 323 (2010), 382–392.
[DGMP2] A., Díaz, A., Glesser, N., Mazza, & S., Park, Glauberman's and Thompson's theorems for fusion systems, Proc. Amer. Math. Soc., 137 (2009), 495–503.
[DGPS] A., Díaz, A., Glesser, S., Park, & R., Stancu, Tate's and Yoshida's theorem for fusion systems, Journal London Math. Soc. (to appear).
[DN1] A., Díaz & A., Libman, Segal's conjecture and the Burnside ring of fusion systems, J. London Math. Soc., 80 (2009), 665–679.
[DN2] A., Díaz & A., Libman, The Burnside ring of fusion systems, Adv. Math., 222 (2009), 1943–1963.
[DRV] A., Díaz, A., Ruiz & A., Viruel, All p-local finite groups of rank two for odd prime p, Trans. Amer. Math. Soc., 359 (2007), 1725–1764.
[Dr] A., Dress, Induction and structure theorems for orthogonal representations of finite groups, Annals of Math., 102 (1975), 291–325.
[Dw] W., Dwyer, Homology decompositions for classifying spaces of finite groups, Topology, 36 (1997), 783–804.
[DK1] W., Dwyer & D., Kan, Realizing diagrams in the homotopy category by means of diagrams of simplicial sets, Proc. Amer. Math. Soc., 91 (1984), 456–460.
[DK2] W., Dwyer & D., Kan, Centric maps and realizations of diagrams in the homotopy category, Proc. Amer. Math. Soc., 114 (1992), 575–584.
[Er] K., Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, 1428, Springer-Verlag, Berlin (1990).
[Fe] W., Feit, The Representation Theory of Finite Groups, North Holland (1982).
[FT] W., Feit and J., Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775–1029; 218–270; 354–393.
[FF] R., Flores and R., Foote, Strongly closed subgroups of finite groups, Adv. in Math., 222 (2009), 453-484.
[F] R., Foote, A characterization of finite groups containing a strongly closed 2-subgroup, Comm. Alg., 25 (1997), 593–606.
[Fr] E., Friedlander, Étale Homotopy of Simplicial Schemes, Annals of Mathematics Studies, vol. 104, Princeton University Press (1982).
[Gl1] G., Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403–420.
[Gl2] G., Glauberman, Factorizations in local subgroups of finite groups, Regional Conference Series in Mathematics, 33, Amer. Math. Soc. (1977).
[GN] G., Glauberman & R., Niles, A pair of characteristic subgroups for pushing-up in finite groups, Proc. London Math. Soc., 46 (1983), 411–453.
[GZ] P., Gabriel & M., Zisman, Calculus of Fractions and Homotopy Theory, Springer-Verlag (1967).
[GJ] P., Goerss & R., Jardine, Simplicial Homotopy Theory, Birkhäauser Verlag (1999).
[Gd1] D., Goldschmidt, A conjugation family for finite groups, J. Algebra, 16 (1970), 138–142.
[Gd2] D., Goldschmidt, Strongly closed 2-subgroups of finite groups, Annals of Math., 102 (1975), 475–489.
[Gd3] D., Goldschmidt, 2-fusion in finite groups, Annals of Math., 99 (1974), 70-117.
[G1] D., Gorenstein, Finite groups, Harper & Row (1968).
[G2] D., Gorenstein, The Classification of the Finite Simple Groups, I, Plenum (1983).
[GH] D., Gorenstein and M., Harris, Finite groups with product fusion, Annals of Math., 101 (1975), 45–87.
[GL] D., Gorenstein and R., Lyons, Nonsolvable finite groups with solvable 2-local subgroups, J. Algebra, 38 (1976), 453–522.
[GLS3] D., Gorenstein, R., Lyons, and R., Solomon, The Classification of the Finite Simple Groups, Number 3, Mathematical Surveys and Monographs, vol. 40, Amer. Math. Soc. (1998).
[GLS6] D., Gorenstein, R., Lyons, and R., Solomon, The Classification of the Finite Simple Groups, Number 6, Mathematical Surveys and Monographs, vol. 40, Amer. Math. Soc. (2005).
[GW1] D., Gorenstein and J., Walter, The characterization of finite simple groups with dihedral Sylow 2-subgroups, J. Algebra, 2 (1964), 85–151; 218–270; 354–393.
[GW2] D., Gorenstein and J., Walter, Balance and generation in finite groups, J. Algebra, 33 (1975), 224-287.
[GHL] D., Green, L., Héthelyi, & M., Lilienthal, On Oliver's p-group conjecture, Algebra Number Theory, 2 (2008), 969–977.
[GHM] D., Green, L., Héthelyi, & N., Mazza, On Oliver's p-group conjecture: II, Math. Annalen, 347 (2010), 111–122.
[Gr] J., Grodal, Higher limits via subgroup complexes, Annals of Math., 155 (2002), 405–457.
[Ht] A., Hatcher, Algebraic Topology, Cambridge Univ. Press (2002).
[H] D., Higman, Indecomposable representations at characteristic p, Duke J. Math., 21 (1954), 377–381.
[HV] J., Hollender & R., Vogt, Modules of topological spaces, applications to homotopy limits and E∞ structures, Arch. Math., 59 (1992), 115–129.
[IsNa] I.M., Isaacs and G., Navarro, New refinements of the McKay conjecture for arbitrary finite groups, Annals of Math., 156 (2002), 333–344.
[JM] S., Jackowski & J., McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology, 31 (1992), 113–132.
[JMO] S., Jackowski, J., McClure, & B., Oliver, Homotopy classification of self-maps of BG via G-actions, Annals of Math., 135 (1992), 183–270.
[JS] S., Jackowski & J., Stomińska, G-functors, G-posets and homotopy decompositions of G-spaces, Fundamenta Math., 169 (2001), 249–287.
[J] Z., Janko, Nonsolvable finite groups all of whose 2-local subgroups are solvable,I, J. Algebra, 21 (1972), 458–517.
[K1] R., Kessar, Introduction to block theory, Group Representation Theory, EPFL Press, Lausanne (2007) 47–77.
[Ke1] R., Kessar, The Solomon system FSol(3) does not occur as fusion system of a 2-blockJ. Algebra, 296, no. 2 (2006), 409–425.
[KL] R., Kessar & M., Linckelmann, ZJ-theorems for fusion systems, Trans. Amer. Math. Soc., 360 (2008), 3093–3106.
[KS] R., Kessar, R., Stancu, A reduction theorem for fusion systems of blocks, J. Algebra, 319 (2008), 806–823.
[KKoL] R., Kessar, S., Koshitani, M., Linckelmann, Conjectures of Alperin and Broué for 2-blocks with elementary abelian defect groups of order 8, J. Reine Angew. Math. (to appear).
[KKuM] R., Kessar, N., Kunugi, N., Mitsuhashi, On saturated fusion systems and Brauer indecomposability of Scott modules, J. Algebra (to appear).
[KR] R., Knörr and G. R., Robinson, Some remarks on a conjecture of Alperin, J. London Math. Soc. (2), 39 (1989), no. 1, 48–60.
[KoZ] S., Koenig, A., Zimmermann, Derived equivalences for group rings, Lecture Notes in Mathematics, 1685, Springer-Verlag, Berlin (1998).
[Ku] B., Küshammer, Lectures on block theory, London Mathematical Society Lecture Note Series 161, Cambridge Univ. Press, Cambridge (1991).
[KulP] B., Külshammer, L., Puig, Extensions of nilpotent blocks, Invent. Math., 102, no. 1 (1990), 17–71.
[KulOW] B., Külshammer, A., Watanabe, and T., Okuyama, A lifting theorem with applications to blocks and source algebras, J. Algebra, 232, no. 1 (2000), 299–309.
[La] J., Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. I.H.E.S., 75 (1992), 135–244.
[LS] I., Leary & R., Stancu, Realising fusion systems, Algebra & Number Theory, 1 (2007), 17–34.
[LO] R., Levi & B., Oliver, Construction of 2-local finite groups of a type studied by Solomon and Benson, Geometry & Topology, 6 (2002), 917–990.
[LO2] R., Levi & B., Oliver, Correction to: Construction of 2-local finite groups of a type studied by Solomon and Benson, Geometry & Topology, 9 (2005), 2395–2415.
[LR] R., Levi & K., Ragnarsson, p-local finite group cohomology, Homotopy, Homology, Appl. (to appear).
[Lb] A., Libman, The normaliser decomposition for p-local finite groups, Alg. Geom. Topology, 6 (2006), 1267–1288.
[LbS] A., Libman & N., Seeliger, Homology decompositions and groups inducing fusion systems, preprint.
[LV] A., Libman & A., Viruel, On the homotopy type of the non-completed classifying space of a p-local finite group, Forum Math., 21 (2009), 723–757.
[Li1] M., Linckelmann, The isomorphism problem for cyclic blocks and their source algebras. Invent. Math., 125 (1996), 265-283.
[Li2] M., Linckelmann, Fusion category algebras, J. Algebra, 277, no. 1 (2004), 222–235.
[Li3] M., Linckelmann, Simple fusion systems and the Solomon 2-local groups, J. Algebra, 296, no. 2 (2006), 385–401.
[Li4] M., Linckelmann, Alperin's weight conjecture in terms of equivariant Bredon cohomology, Math. Z., 250, no. 3 (2005), 495–513.
[Li5] M., Linckelmann, Trivial source bimodule rings for blocks and p-permutation equivalences, Trans. Amer. Math. Soc., 361 (2009), 1279–1316.
[Li6] M., Linckelmann, On H*(C:kx) for fusion systems, Homology, Homotopy Appl., 11, no. 1 (2009), 203–218.
[LP] J., Lynd & S., Park, Analogues of Goldschmidt's thesis for fusion systems, J. Algebra, 324 (2010), 3487–3493.
[McL] S., MacLane, Homology, Springer-Verlag (1975).
[MP1] J., Martino & S., Priddy, Stable homotopy classification of BGp. Topology, 34 (1995), 633–649.
[MP2] J., Martino & S., Priddy, Unstable homotopy classification of BGp, Math. Proc. Cambridge Phil. Soc., 119 (1996), 119–137.
[May] J.P., May, Simplicial Objects in Algebraic Topology, Univ. Chicago Press (1967).
[MSS] U., Meierfrankenfeld, B., Stellmacher, and G., Stroth, Finite groups of local characteristic p: an overview, Groups, Combinatorics, and Geometry (Durham 2001), World Sci. Publ. (2003), 155–192.
[Mi] H., Miller, The Sullivan conjecture on maps from classifying spaces, Annals of Math., 120 (1984), 39–87.
[Ms] G., Mislin, On group homomorphisms inducing mod-p cohomology isomorphisms, Comment. Math. Helv., 65 (1990), 454–461.
[NT] H., Nagao and Y., Tsushima, Representations of Finite Groups, Academic Press, Boston (1988).
[OW] T., Okuyama and M., Wajima, Irreducible characters of p-solvable groupsProc. Japan Acad. Ser. A Math. Sci., 55 (1979), no. 8, 309–312.
[O1] B., Oliver, Higher limits via Steinberg representations, Comm. in Algebra, 22 (1994), 1381–1402.
[O2] B., Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Camb. Phil. Soc., 137 (2004), 321–347.
[O3] B., Oliver, Equivalences of classifying spaces completed at the prime two, Memoirs Amer. Math. Soc., 848 (2006).
[O4] B., Oliver, Extensions of linking systems and fusion systems, Trans. Amer. Math.Soc., 362 (2010), 5483–5500.
[O5] B., Oliver, Splitting fusion systems over 2-groups, Proc. Edinburgh Math. Soc., proceedings of the 2009 Skye conference on algebraic topology, group theory and representation theory (to appear).
[OV1] B., Oliver & J., Ventura, Extensions of linking systems with p-group kernel, Math. Annalen, 338 (2007), 983-1043.
[OV2] B., Oliver & J., Ventura, Saturated fusion systems over 2-groups, Trans. Amer. Math. Soc., 361 (2009), 6661–6728.
[Ols] J. B., Olsson, On 2-blocks with quaternion and quasidihedral defect groupsJ. Algebra, 36 (1975), 212-241.
[Ols2] J. B., Olsson, On subpairs and modular representation theory, J. Algebra, 76 (1982), 261–279.
[OS] S., Onofrei and R., Stancu, A characteristic subgroup for fusion systems, J. Algebra, 322 (2009), 1705–1718.
[Pa1] S., Park, The gluing problem for some block fusion systems, J. Algebra, 323 (2010), 1690–1697.
[Pa2] S., Park, Realizing a fusion system by a single finite group, Arch. Math., 94 (2010), 405-410.
[P1] L., Puig, Structure locale dans les groupes finis, Bull. Soc. Math. France Suppl. Mém., 47 (1976).
[P2] L., Puig, Local fusions in block source algebras, J. Algebra, 104, no. 2 (1986), 358–369.
[P3] L., Puig, Nilpotent blocks and their source algebras, Invent. Math., 93, no. 1 (1988), 77–116.
[P4] L., Puig, The Nakayama conjecture and the Brauer pairsSeminaire sur les groupes finis III, Publications Matehmatiques De L'Université Paris VII, 171–189.
[P5] L., Puig, The hyperfocal subalgebra of a block, Invent. math., 141 (2000), 365–397.
[P6] L., Puig, Frobenius categories, J. Algebra, 303 (2006), 309–357.
[P7] L., Puig, Frobenius Categories versus Brauer Blocks, Birkhäser (2009).
[PUs] L., Puig and Y., Usami, Perfect isometries for blocks with abelian defect groups and cyclic inertial quotients of order 4, J. Algebra, 172 (1995), 205–213.
[Rg] K., Ragnarsson, Classifying spectra of saturated fusion systems, Algebr. Geom. Topol., 6 (2006), 195–252.
[RSt] K., Ragnarsson & R., Stancu, Saturated fusion systems as idempotents in the double Burnside ring, preprint.
[Ri1] J., Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra, 61, no. 3 (1989), 303–317.
[Ri2] J., Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. (3), 72, no. 2 (1996), 331–358.
[RS] K., Roberts & S., Shpectorov, On the definition of saturated fusion systems, J. Group Theory, 12 (2009), 679–687.
[Ro1] G. R., Robinson, Local structure, vertices and Alperin's conjecture, Proc. London Math. Soc., 72 (1996), 312–330.
[Ro2] G. R., Robinson, Weight conjectures for ordinary characters, J. Algebra, 276 (2004), 761–775.
[Ro3] G., Robinson, Amalgams, blocks, weights, fusion systems, and finite simple groups, J. Algebra, 314 (2007), 912–923.
[Rz] A., Ruiz, Exotic normal fusion subsystems of general linear groups, J. London Math. Soc., 76 (2007), 181–196.
[RV] A., Ruiz & A., Viruel, The classification of p-local finite groups over the extraspecial group of order p3 and exponent p, Math. Z., 248 (2004), 45–65.
[Sa1] B., Sambale, 2-blocks with mimimal non-abelian defect groups, J. Algebra (to appear).
[Sa2] B., Sambale, Blocks with defect group, J. Pure Appl. Algebra (to appear).
[Sa3] B., Sambale, Fusion systems on metacyclic 2-groups, preprint.
[Sg] G., Segal, Classifying spaces and spectral sequences, Publ. Math. I.H.E.S., 34 (1968), 105–112.
[Se1] J. P., Serre, Corps Locaux, Hermann (1968).
[Se2] J.-P., Serre, Trees, Springer-Verlag (1980).
[Sm] F., Smith, Finite simple groups all of whose 2-local subgroups are solvable, J. Algebra, 34 (1975), 481–520.
[So] R., Solomon, Finite groups with Sylow 2-subgroups of type .3, J. Algebra, 28 (1974), 182–198.
[Sta1] R., Stancu, Control of fusion in fusion systems, J. Algebra Appl., 5 (2006), 817–837.
[Sta2] R., Stancu, Equivalent definitions of fusion systems, preprint.
[Stn] R., Steinberg, Lectures on Chevalley Groups, Yale Lecture Notes (1967).
[St1] B., Stellmacher, A characteristic subgroup of S4-free groups, Israel J. Math., 94 (1996), 367–379.
[St2] B., Stellmacher, An application of the amalgam method: the 2-local structure of N-groups of characteristic 2-type, J. Algebra, 190 (1997), 11–67.
[Sw] R., Switzer, Algebraic Topology, Springer-Verlag (1975).
[Th] J., Thévenaz, G-Algebras and Modular Representation Theory, Oxford Science Publications (1995).
[Th1] J., Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, I, Bull. Amer. Math. Soc., 74 (1968), 383–437; II, Pacific J. Math., 33 (1970), 451–536; III, Pacific J. Math., 39 (1971), 483–534; IV, Pacific J. Math., 48(1973), 511–592; V, Pacific J. Math., 50 (1974), 215–297; VI, Pacific J. Math., 51 (1974), 573–630.
[Th2] J., Thompson, Simple 3′-groups, Symposia Math., 13 (1974), 517–530.
[Tu] A., Turull, Strengthening the McKay Conjecture to include local fields and local Schur indices, J. Algebra, 319 (2008), 4853–4868.
[Un] K., Uno, Conjectures on character degrees for the simple Thompson group, Osaka J. Math., 41 (2004), 11–36.
[W] J., Walter, The B-Conjecture; characterization of Chevalley groups, Memoirs Amer. Math. Soc., 61 no. 345 (1986), 1–196.
[Wb1] P., Webb, A split exact sequence of Mackey functors, Comment. Math. Helv., 66 (1991), 34–69.
[Wb2] P.J., Webb, Standard stratifications of EI categories and Alperin's weight conjecture, J. Algebra, 320 (2008), 4073–4091.
[Wei] C., Weibel, An Introduction to Homological Algebra, Cambridge Univ. Press (1994).
[Wh] G., Whitehead, Elements of Homotopy Theory, Springer-Verlag (1978).
[Wo] Z., Wojtkowiak, On maps from holim F to Z (Algebraic topology, Barcelona, 1986), Lecture notes in math., 1298, Springer-Verlag (1987), –227–236.
[Zi] K., Ziemiański, Homotopy representations of SO(7) and Spin(7) at the prime 2, Jour. Pure Appl. Algebra, 212 (2008), 1525–1541.