Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Introduction
- 2 Algebras and Coalgebras
- 3 Finitary Iteration
- 4 Finitary Set Functors
- 5 Finitary Iteration in Enriched Settings
- 6 Transfinite Iteration
- 7 Terminal Coalgebras as Algebras, Initial Algebras as Coalgebras
- 8 Well-Founded Coalgebras
- 9 State Minimality and Well-Pointed Coalgebras
- 10 Fixed Points Determined by Finite Behaviour
- 11 Sufficient Conditions for Initial Algebras and Terminal Coalgebras
- 12 Liftings and Extensions from Set
- 13 Interaction between Initial Algebras and Terminal Coalgebras
- 14 Derived Functors
- 15 Special Topics
- Appendix A Functors with Initial Algebras or Terminal Coalgebras
- Appendix B A Primer on Fixed Points in Ordered and Metric Structures
- Appendix C Set Functors
- References
- List of Categories
- Index
11 - Sufficient Conditions for Initial Algebras and Terminal Coalgebras
Published online by Cambridge University Press: 30 January 2025
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Introduction
- 2 Algebras and Coalgebras
- 3 Finitary Iteration
- 4 Finitary Set Functors
- 5 Finitary Iteration in Enriched Settings
- 6 Transfinite Iteration
- 7 Terminal Coalgebras as Algebras, Initial Algebras as Coalgebras
- 8 Well-Founded Coalgebras
- 9 State Minimality and Well-Pointed Coalgebras
- 10 Fixed Points Determined by Finite Behaviour
- 11 Sufficient Conditions for Initial Algebras and Terminal Coalgebras
- 12 Liftings and Extensions from Set
- 13 Interaction between Initial Algebras and Terminal Coalgebras
- 14 Derived Functors
- 15 Special Topics
- Appendix A Functors with Initial Algebras or Terminal Coalgebras
- Appendix B A Primer on Fixed Points in Ordered and Metric Structures
- Appendix C Set Functors
- References
- List of Categories
- Index
Summary
This chapter presents a number of sufficient conditions to guarantee that an endofunctor has an initial algebra or a terminal coalgebra. We generalize Kawahara and Mori’s notion of a bounded set functor and prove that for a cocomplete and co-well-powered category with a terminal object, every endofunctor bounded by a generating set has a terminal coalgebra. We use this to show that every accessible endofunctor on a locally presentable category has an initial algebra and a terminal coalgebra. We introduce pre-accessible functors and prove that on a cocomplete and co-well-powered category, the initial-algebra chain of a pre-accessible functor converges, and so the initial algebra exists. If the base category is locally presentable and the functor preserves monomorphisms, then the terminal coalgebra exists.
Keywords
- Type
- Chapter
- Information
- Initial Algebras and Terminal CoalgebrasThe Theory of Fixed Points of Functors, pp. 363 - 397Publisher: Cambridge University PressPrint publication year: 2025