Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T17:09:02.700Z Has data issue: false hasContentIssue false

Dietrich Stoyan: A Tribute on the Occasion of his Seventieth Birthday

Published online by Cambridge University Press:  01 July 2016

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © Applied Probability Trust 2010 

References

Selected books by Dietrich Stoyan

Illian, J. Penttinen, A. Stoyan, H. Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley, Chichester.Google Scholar
Müller, A. Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley, Chichester.Google Scholar
Stoyan, D. (1977). Qualitative Eigenschaften und Abschätzungen Stochastischer Modelle. Akademie-Verlag, Berlin. (Translated into Russian by Zaitseva, V. A. in 1979, ed. Kalashnikov, V. V.)CrossRefGoogle Scholar
Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models, ed. Daley, D. J. John Wiley, Chichester.Google Scholar
Stoyan, D. Mecke, J. (1983). Stochastische Geometrie. Akademie-Verlag, Berlin.Google Scholar
Stoyan, D. Stoyan, H. (1994). Fractals, Random Shapes and Point Fields (translation of the 1992 German original). John Wiley, Chichester.Google Scholar
Stoyan, D. Kendall, W. S. Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.Google Scholar

Other references

Franken, P. König, D. Arndt, U. Schmidt, V. (1981). Queues and Point Processes. Akademie-Verlag, Berlin.Google Scholar
Gnedenko, В. W. Kovalenko, I. N. (1971). Einführing in die Bedienungstheorie. Akademie-Verlag, Berlin. Kallenberg, О. (1975). Random Measures. Akademie-Verlag, Berlin.Google Scholar
Kerstan, J. Matthes, K. Mecke, J. (1974). Unbegrenzt teilbare Punktprozesse, Akademie-Verlag, Berlin. (Translated into English in 1978 and into Russian in 1982.)Google Scholar
König, D. Matthes, K. Nawrotzki, K. (1967). Verallgemeinerung der Erlangschen und Engsetschen Formeln (Eine Methode in der Bedienungstheorie). Akademie-Verlag, Berlin.Google Scholar