Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T12:35:16.616Z Has data issue: false hasContentIssue false

Multielement Preconcentration of Rare Earth Elements for Their Determination at ppm-Levels in Geological Samples

Published online by Cambridge University Press:  06 March 2019

Eva Wolf
Affiliation:
Institute for Analytical Chemistry, Micro- and Radiochemistry, Institute for Engineering Geology and Applied Mineralogy, Technical University Graz, Technikerstraβe 4, A-8010 Graz, Austria
Wolfhard Wegscheider
Affiliation:
Institute for Analytical Chemistry, Micro- and Radiochemistry, Institute for Engineering Geology and Applied Mineralogy, Technical University Graz, Technikerstraβe 4, A-8010 Graz, Austria
Hans Kolmer
Affiliation:
Institute for Analytical Chemistry, Micro- and Radiochemistry, Institute for Engineering Geology and Applied Mineralogy, Technical University Graz, Technikerstraβe 4, A-8010 Graz, Austria
Get access

Abstract

A preconcentration procedure is reported for rare earth elements suitable for concentration levels generally found in rocks. This method is of geochemical interest because the abundance of rare earth elements gives important clues to the origin of rock formations.

The procedure is based on an anion-exchange separation step followed by a precipitation of rare-earth elements chelates onto a membrane filter. For the investigation of recovery a combined radionuclide tracer and X-ray sensitivity method was used. Detection limits in the sub-μg/g-range are reported.

Type
V. XRF Applications; Fuels and Lubricants, Metals and Alloys, Geological, Heavy Element, Other
Copyright
Copyright © International Centre for Diffraction Data 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Broekaert, J.A.C. and Hörman, P.K., 1981, SEperstion of Yttrium and Rar Earth Elements from Geological Materials, final. Chim. Acta 124:421.Google Scholar
Brunfelt, A. O., and Steinnes, E., 1969 Determi-nation of Lutetium, and Terbium in Rocks by Nsutron Activation and Mixed Solvent Anion-exchange Chrowtatogrsphy, Analyst 94:979.Google Scholar
Crock, J.G., and Lichte, F.E., 1982 Determination cf Rare Earth Elements in Beoehemical Materials by Inductively Coupled Argon Plasma/Atomic Emission Spectrometry, Anal. Chem. 54:1329.Google Scholar
Eby, G.W. I 1972, Determination of Rare-Earth, Yttrium, and Scandium Abondances in Rocks and Minerals by an Ion Exchange - X-Ray Fluorescence Procédure, Aial. Chem. 44:2137.Google Scholar
Ellis, A.T., Leyden, D.E., Wegscheider, W., Jablonski, B.B., and Bodnar, W.B., (1982a) Preconcentrat ion Methode for the Determination of Trace Elements in Water Using X-Ray Fluorescence Spectrometry. I. Response Characteristics, Anal Chim. Acta. 142:73Google Scholar
Ellis, A.T., Leyden, D.E.,Wegscheider, W., Jablanski, B.B., and Bodnar, W.B., 1982b, Preconcentration Methode for the Determination of Trace Elements in Water Using X-Ray Fluorescence Spectrcmetry. II. Interference Studies, final. Chim. Acta 142:82Google Scholar
Erzinger, J., 1985, Verfahren zur Bestimmung der Seltenen Erden in geologischen Matrizes reit Hilfe der 1CP-OES. in: Instrumentelle Multielementanalyse (Sansoni, B., ed.), VCH. erlagsgesellscbaft: Ueinheim, pp. 551-552Google Scholar
Hartmann, G., Sarx, B., Klenk, H., and Bächmannj, K., Anreicherung von Seltenen Erden, Uran und Thorium und Bestimmung durch Rontgenfluoreszenzanalyse, in: Instrumente 1 le Multielementanalyse (Sansoni, B., ed., VCH. erlagsgeselIschaft: Weinheim, pp. 485490 Google Scholar
Haskin, L.A., 1984, Petrogenetic Modslling - Use of Rare Earth Elements, in: Rare Earth Geoehemistry (Henderson, P., ed.), Elsevier : Amsterdam - Oxford - New York — Tokyo, p. 315 Google Scholar
Haskin, L.A., Wildentan, T.R., and Haskin, M.A., 1768 An Accurate Procedure for the Determination of the Rare Earths by Neutren fictivation, J. Radioanal. Chem. 1:337.Google Scholar
Herrmann, A.G., 1970, Yttrium and Lanthanides, in: Handbook of Geochemistry (Wedepohl, K.H., ed.), Springer: Her 1in-Heidelberg-New York, Table 39, 57 - 71/E-it and Table 39, 57 - 71/E-2a.Google Scholar
Hooker, P.J., D'Nions, R.K., and Fankhurstf, R. J., 1975, Determination of Rare-Earth Elements in USSS. tandard Rocks by Mixed-So'lvent Ion Exchange and riass-Spectrometric Isotope Dilution, Chem. Geol. 16:189.Google Scholar
Korkisch, J., and Arrhenius, G., 1964, Separation of Uranium, Thorium, and the Rare Earth Elements by Anion Exchange, final. Chem. 36:850.Google Scholar
Külcüf, M., and Trömel, M., 1984, Zur Bestimmung der Lantbanoiden durch Rontgenfluoreszenzanalyse, Fres.’ Z. Ana 1. Chem. 318:604.Google Scholar
Jablonski, A.B., and Leyden, D.E., 1981, filicrocomputer Based Control and Data Acquisition System for Early Model Wave length-dispersive X-Ray Spectrometers, X-Ray Spectrom. 10:177Google Scholar
Machacek, V., and Heiss, D., 1935, X-Ray Fluorescence Détermination of Light Rare Earth Elements, Y. and Th, by the Fusion Technique, X-Ray Spectrora. 14:53.Google Scholar
Pella, P.A., Tao, G. Y., Dragootfi, L., and Eby, J.M., 1985,X-Ray Spectroraetric Deterraination of Ceria-Yttria Mixtures after Borate Fusion, Anal. Chem. 57:1752.Google Scholar
Oing-Lie, H., Hughes, T.C.. Hankka, M. and Hannaker, P., 1935, Determination of the Rare-Earth Elements in Geological Materials by Thin-Film X-Ray Fluorescence and Inductively Coupled Plasma Atomic-Emission Spectrometry) Talanta 32:495.Google Scholar
Raptis, S.E., Wegscheider, W., Knapp, G., and Tilg, G., 1980, X-Ray Fluorescence Determination of Trace Selenium in Organic and Bidogical Matrices, final. Chem. 52:1292.Google Scholar
Roelandts, I., 1981, Determinat ion of Light Rare Earth Elements in fipatite by X-Ray Fluorescence Spectrometry after Anion Exchange Extraction, final. Chem. 53:676.Google Scholar
Ryabukhin, V.A., Gatinskaya, N.B., Ermakov, A.N., and Shevaleevski, I.D., 1984, X-Ray Fluorescence Détermination of the Rare Ëarths in Sftisll fimounts of Concentrate, Zh. final. Khirc. (engl.) 38:1238.Google Scholar
Van Puymbroeckj, J., and Gijbels, R., 1981, Determination of Rare-Eartb Elements in Rocks by Spark Source Mass Spetztrometry and Isotope Diluticn after Ion-Exchange Separation in Mixect Solventsj Fres, ’ Z. Anal.Chem. 309:312,Google Scholar
Voldet, P., and Haerdi, W., 1978, Determination of Rare-Eartb Elements in Rocks by Neutron Activation Fallawed by High-Resolution X-Hay Spectrometry or Garama-Spectrometry, Anal. Chirn. flcta 97:185.Google Scholar
Walton, R.D., 1971, High Precision Determinat ion of Elicrogrsrji Quantities of Rare Esrth Metals by X-Ray Emission Spectrography of Ion Exchange Paper Disks, Dev. Appl, Spectrom. 9:287,Google Scholar
Wellis, A. T. Goldbach, K.,Leyden, D. E., and Ilahan, K. I., in press, Use of Sensitivity as a Function of Fluorescent X-Ray Energy in Energy Dispersive X-Ray Spectrometry, final, Chim. Acta.Google Scholar
Wyttenbach, A.J. Bajo, S., and Tobler, L., 1983, Group Separation of Rare Earth Elements by Liquid-Liquid Extraction for the Neutron Activation Analysis of Silicate Rocks, J. Radioanal Chem. 78;283.Google Scholar