Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T05:53:56.468Z Has data issue: false hasContentIssue false

Validation of transonic turbulent flows past delta wing configurations

Published online by Cambridge University Press:  04 July 2016

A. Hilgenstock*
Affiliation:
Institut für Theoretische Strömungsmechanik, DLR Göttingen, Germany

Abstract

The turbulent flow around a delta wing at incidence is simulated numerically using a finite-volume Navier-Stokes method. The numerical simulation makes use of a simple algebraic turbulence model. The influence of grid refinement is investigated. The more realistic wing-body configuration with round leading edge is used to discuss the influence of the position of the transition line and to compare experimental and numerical data to validate the numerical method. The topological structure of the flow is discussed. An explanation is given for the low particle density area close to the primary vortex as it is visualised by laser light-sheet technique in the experiment. Results for a close coupled delta-wing-canard configuration are discussed.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1991 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rizzi, A. and Müller, B. Comparison of Euler and Navier-Stokes solutions for vortex flow over a delta wing. Aeronaut J, April 1988, 92, (914), pp 145153.Google Scholar
2. Rizzi, A. and Müller, B. Large-scale viscous simulation of laminar vortex flow over a delta wing. AIAA J, 1989, 27, (7), p 833.Google Scholar
3. Müller, B. and Rizzi, A. Navier-Stoke Solutions for Transonic Flow over Delta Wings, In: Notes on Numerical Fluid Mechanics, Vol. 20, Vieweg Braunschweig, 1988.Google Scholar
4. Williams, B. R., Kordulla, W., Borsi, M. and Hoeijmakers, H. W. M. Comparison of Solution of Various Euler Solvers and One Navier-Stokes Solver for the Flow About a Sharp-Edged Delta Wing. AGARD 67th Meeting of the Fluid Dynamics Panel Symposium on Vortex Flow Aerodynamics, Scheveningen, The Netherlands, 1-4. Oct. 1990.Google Scholar
5. Hilgenstock, A. Ein Beitrag zur numerischen Simulation der transsonischen Strömung um einen Deltaflügel durch Lösung der Navier-Stokes’schen Bewegungsgleichungen. Dissertation Universitat Karlsruhe (TH), 1990, auch Forschungsbericht der DLR, DLR-FB 90-13, 1990.Google Scholar
6. Baldwin, B. S. and Lomax, H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257, 1978.Google Scholar
7. Degani, D. and Schiff, L. B. Computation of Supersonic Viscous Flows Around Pointed Bodies at Large Incidence. AIAA-83-0034, 1983.Google Scholar
8. Schwamborn, D. Simulation of the DFVLR-F5 Wing Experiment Using a Block Structured Explicit Navier-Stokes Method, In: Notes on Numerical Fluid Mechanics, Vol. 22, Vieweg Braunschweig 1988.Google Scholar
9. Hirdes, R. H. C. M. US/European Vortex Flow Experiment. Test Report of Wind Tunnel Measurements on the 65 Degree Wing in the NLR Speed Wind Tunnel HST. NLR TR 85046 L, May 1985.Google Scholar
10. Hartmann, K. Force and Pressure Measurements Including Surface Flow Visualization on aCropped Delta Wing, in Proceedings on the ‘International Vortex Flow Experiment on Euler Code Validation’ , Stockholm, October 1-3, 1986 (published by FFA), pp 63–;88.Google Scholar
11. Hartmann, K. US/European Transonic Vortex Flow Experiment-Data Lists of Pressure Measurements, DFVLR IB 222-86 A26, 1986.Google Scholar
12. Hartmann, K. and Butefisch, K. A. Private communication. 1989.Google Scholar
13. Bütefisch, K. A., Pallek, D. and Sauerland, K.-H. Three Component LDA Measurements on a 65 Degree Delta Wing. DFVLR IB 222-87 A 34, 1987.Google Scholar
14. Thompson, J. F., Warsi, Z. U. A. and Mastin, C. W. Numerical Grid Generation, Foundations and Applications. Amsterdam, North Holland, 1985.Google Scholar
15. Bütefisch, K. A. and Hartmann, K. Flow Field Visualisation Study on a 65 Degree Delta Wing at M = 0.85. Strömung mit Ablosung, S. 159-168. DGLR-Bericht 88-05, 1988.Google Scholar
16. Vollmers, H. A Concise Introduction to COMADI. DLR IB 222-89 A 22, 1989.Google Scholar
17. Vollmers, H., Kreplin, H.-P. and Meier, H. U. Separation and Vortical-Type Flow Around a Prolate Spheroid – Evaluation of Relevant Parameters. AGARD CP 342, April 1983, Rotterdam, Netherlands.Google Scholar
18. Dallmann, U., Hilgenstock, A., Riedelbauch, ST., Schulte-Werning, B. and Vollmers, H. On the Footprints of Three-Dimensional Separated Vortex Flows Around Blunt Bodies. AGARD 67th Meeting of the Fluid Dynamics Panel Symposium on Vortex Flow Aerodynamics, Scheveningen, The Netherlands, 1-4 Oct. 1990.Google Scholar
19.Oelker, H.-CHR. and Hummel, D. Windkanaluntersuchungen an der Konfiguration des Internationalen Vortex Flow Experimentes. Stromungen mit Ablosung, DGLR-Bericht 88-05, 1988.Google Scholar