Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T00:01:36.976Z Has data issue: false hasContentIssue false

Effects of Wire Length in Turbulence Investigations with a Hot-Wire Anemometer*

Published online by Cambridge University Press:  07 June 2016

F. N. Frenkiel*
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University
Get access

Summary

The paper discusses the influence of wire length on the characteristics of a turbulent flow as measured with a hot-wire anemometer. Most of the mathematical treatment can be directly applied to other problems of length correction, such as may occur, for instance, in problems of astrophysical turbulence, as well as to some problems related to measurements of random processes. The discussion will, however, use the example of a hot-wire anemometer with particular attention to the influence of the length of the wire on the measurement of the intensity of turbulence, correlation coefficients, and scale and microscale of turbulence.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society. 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Some of the results given here were included in the United States Naval Ordnance Laboratory Memorandum 9658 (1948) distributed to a limited number of readers.

References

1. King, L. V. (1914). On the Convection of Heat from Small Cylinders in a Stream of Fluid: Determination of the Convection Constants of Small Platinum Wires with Applications to Hot Wire Anemometry. Phil. Trans. Roy. Soc. A. Vol. 214, p. 373, 1914.Google Scholar
2. Schubauer, G. B. and Klebanoff, P. S. (1946). Theory and Application of Hot Wire Instruments in the Investigation of Turbulent Boundary Layers. N.A.C.A. Wartime Report, ACR 5K27, 1946.Google Scholar
3. Dryden, H. L. and Kuethe, A. M. (1929). The Measurement of Fluctuations of Air Speed by the Hot Wire Anemometer. N.A.C.A. Report 320, 1929.Google Scholar
4. Kovasznay, L. (1943). Calibration and Measurement in Turbulence Research by Hot Wire Method. N.A.C.A. Memo. 1130, 1947. Translation from: A Muegyetem Aerodinamikai Intezeteben Keszult Munka. Budapest, Hungary, 1943.Google Scholar
5. Frenkiel, F. N. (1946). L'Emploi de 1’ Anemomètre a Fil Chaud dans l'Etude de la Turbulence. Groupement Français pour le Dévelopment des Recherches Aéronautiques (G.R.A.) Note Technique 41, 1946.Google Scholar
6. Dryden, H. L., Schubauer, G. B., Mock, W. C. Jr., and Skramstad, H. K. (1937). Measurements of Intensity and Scale of Wind Tunnel Turbulence and Their Relation to the Critical Reynolds Number of Spheres. N.A.C.A. Report 581, 1937.Google Scholar
7. Frenkiel, F. N. (1946). Théorie de la Mesure de l'lntensité de la Turbulence avec un Fil Chaud de Longueuer Non-Négligeable. C. R. Acad, des Sciences, Vol. 222, p. 1,474, 1946.Google Scholar
8. Von Kármán, Th. (1937). The Fundamentals of the Statistical Theory of Turbulence. Journal of the Aeronautical Sciences. Vol. 4, p. 131, 1937.Google Scholar
9. Taylor, G. I. (1938). The Statistical Theory of Turbulence. Proc. Roy. Soc. A, Vol. 151, p. 421, 1935.Google Scholar
10. Batchelor, G. K. and Townsend, A. A. (1937). Decay of Vorticity in Isotropic Turbulence. Proc. Roy. Soc. A, Vol. 190, p. 534, 1937.Google Scholar