Published online by Cambridge University Press: 07 June 2016
The problem considered is the buckling of a rectangular plate under uniaxial compression. The ends may be either both clamped, both simply-supported or a mixture of the two. The sides may be elastically restrained against both deflection and rotation with any stiffnesses whatsoever. It is shown that the curve of buckling stress coefficient versus side ratio can be deduced in a simple manner from that of a plate with the same end conditions but with both sides simply-supported, provided only that the buckling stress coefficient and wavelength for an infinite strip with the same side conditions are known. Some correlations between the curves for the three types of end condition are discussed. It is also shown that if, for some given side ratio, the buckling mode is known, then it is always possible to deduce the rate of change of buckling stress coefficient with side ratio at that point. The argument is based upon an assumption which is shown to give very accurate results in a wide range of cases.