No CrossRef data available.
Published online by Cambridge University Press: 27 February 2009
When model-based planning systems are scaled up to deal with full-sized industrial projects, the resulting complexity in the project-specific model and production plan can create serious problems, not only in dealing with such complexity computationally, but also in user-acceptance. In the model-based planning system described in this paper, activities are dynamically generated, inherently at the detailed level of individual physical components. However, it is possible to intelligently group together collections of components which would be common to realistic work packages, and hence schedule on the basis of virtual components existing within an abstraction hierarchy. This paper describes a technique of project planning within an integrated design/planning system, which exploits fundamental knowledge of engineered systems and provides powerful and flexible planning functionality.