Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:17:30.377Z Has data issue: false hasContentIssue false

Pedigree analysis of the Afrikaner cattle breed

Published online by Cambridge University Press:  20 July 2015

L. Pienaar*
Affiliation:
University of the Free State, Bloemfontein 9300, South Africa ARC – Animal Production Institute, Private Bag X2, Irene 0062, South Africa
F.W.C. Neser
Affiliation:
University of the Free State, Bloemfontein 9300, South Africa
J.P. Grobler
Affiliation:
University of the Free State, Bloemfontein 9300, South Africa
M.M. Scholtz
Affiliation:
University of the Free State, Bloemfontein 9300, South Africa ARC – Animal Production Institute, Private Bag X2, Irene 0062, South Africa
M.D. MacNeil
Affiliation:
ARC – Animal Production Institute, Private Bag X2, Irene 0062, South Africa Delta G, 145 Ice Cave Road, Miles City, MT 59301, USA
*
Correspondence to: L. Pienaar, ARC – Animal Production Institute, Private Bag X2, Irene, South Africa. email: PienaarL@arc.agric.za
Get access

Summary

The reduction of genetic variability in beef cattle has been extensively researched on a global scale. However, the genetic variability and inbreeding of indigenous cattle breeds of Southern Africa, referred to as Sanga cattle, has been less well characterized. Breeds of Sanga cattle include Afrikaner, Drakensberger and Nguni breeds. In recent years, the number of Afrikaner cattle and herds has decreased. Our objective was to determine the mean level of inbreeding (F), effective population size (Ne) and generation intervals of Afrikaner cattle using their recorded pedigree. A total of 244 718 records extending from 1940 until 2011 were analysed. The average inbreeding coefficient was 1.83 percent and the effective population size was 167.54. The average generation interval was calculated as 6.6 ± 3.9 years. Pedigree analysis on the Afrikaner cattle population yielded levels of inbreeding that appear to be both acceptable and manageable. By implication, the large Ne results in a low rate of change in F. Current results study can be utilized by farmers and the breeders’ society to conserve the Afrikaner and utilize the breed to its full potential in the era of climate change.

Résumé

La réduction de la variabilité génétique chez les bovins à viande a fait l'objet de nombreux travaux de recherche à l’échelle mondiale. Pourtant, la variabilité génétique et la consanguinité ont à peine été étudiées chez les races autochtones de bovins à viande du Sud de l'Afrique, regroupés sous le nom de Sanga. Parmi les races du rameau bovin Sanga, se trouvent les races Afrikaner, Drakensberger et Nguni. Ces dernières années, l'effectif de bovins Afrikaners et le nombre d’éleveurs de cette race ont diminué. Notre objectif a été de déterminer le niveau moyen de consanguinité (F), la taille effective de la population (Ne) et les intervalles générationnels des bovins Afrikaners, en se servant pour cela du registre généalogique de la race. Un total de 244 714 inscriptions faites de 1940 à 2011 ont été analysées. Le coefficient moyen de consanguinité et la taille effective de la population ont été respectivement de 1.83 pour cent et 167.54. L'intervalle générationnel moyen a été de 6.6 ± 3.9 ans, d'après les calculs. Les niveaux de consanguinité décelés par l'analyse généalogique de la population bovine Afrikaner semblent acceptables et maîtrisables. En fait, la grande taille Ne entraîne un faible taux de changement pour le coefficient F. Les résultats de cette étude peuvent être utiles à l'association d’éleveurs dans le but de conserver la race Afrikaner et de l'utiliser jusqu’à son plein potentiel à l’ère du changement climatique.

Resumen

La reducción de la variabilidad genética en el ganado vacuno de carne ha sido investigada ampliamente a nivel mundial. Sin embargo, la variabilidad genética y la endogamia de las razas autóctonas del ganado vacuno de carne del Sur de África, conocido como ganado Sanga, han sido estudiadas en mucha menor medida. Entre las razas de ganado bovino Sanga, se encuentran las razas Afrikáner, Drakensberger y Nguni. En los últimos años, el censo de ganado Afrikáner y el número de explotaciones que lo crían han disminuido. Nuestro objetivo fue el de determinar el nivel medio de endogamia (F), el tamaño efectivo de la población (Ne) y los intervalos generacionales del ganado Afrikáner, empleando para ello su registro genealógico. Se analizaron un total de 244 714 registros, que iban de 1940 a 2011. El coeficiente medio de endogamia fue de 1.83 por ciento y el tamaño efectivo de población fue de 167.54. El intervalo generacional medio ascendió, según los cálculos, a 6.6 ± 3.9 años. Los niveles de endogamia arrojados por el análisis genealógico de la población bovina Afrikáner parecen aceptables y manejables. En consonancia, el gran tamaño Ne conlleva una baja tasa de cambio en el coeficiente F. Los resultados del estudio actual pueden ser utilizados por los ganaderos y por la asociación de criadores para conservar la raza Afrikáner y emplearla hasta su pleno potencial en la era del cambio climático.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergh, L. & Havenga, N. 2011. Annual report 2010/2011. National beef recording and improvement scheme. Newsletter, 2011: 59.Google Scholar
Boichard, D., Maignel, L. & Verrier, É. 1997. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol., 29: 523.Google Scholar
Bosman, D.J. 1994. National Beef Cattle Performance and Progeny Testing Scheme. 1980–1992 Results.Google Scholar
Bouquet, A., Venot, E., Laloë, D., Forabosco, F., Fogh, A., Pabiou, T., Moore, K., Eriksson, J.A., Renand, G. & Phocas, F. 2011. Genetic structure of the European Charolais and Limousin cattle metapopulations using pedigree analysis. J. Anim. Sci., 89: 17191730.Google Scholar
Bozzi, R., Franci, O., Forabosco, F., Pugliese, C., Crovetti, A. & Filippini, F. 2006. Genetic variability in three Italian beef cattle breeds derived from pedigree information. Ital. J. Anim. Sci., 5: 129137.CrossRefGoogle Scholar
Cervantes, I., Goyache, F., Molina, A., Valera, M. & Gutiérrez, J.P. 2008. Application of individual increase in inbreeding to estimate realized effective sizes from real pedigrees. J. Anim. Breed. Genet., 125: 301310.Google Scholar
Cleveland, M.A., Blackburn, H.D., Enns, R.M. & Garrick, D.J. 2005. Changes in inbreeding of U.S. Herefords during twentieth century. J. Anim. Sci., 83: 9921001.Google Scholar
Croquet, C., Mayeres, P., Gillon, A., Hammami, H., Soyeurt, H., Vanderick, S. & Gengler, N. 2007. Linear and curvilinear effects of inbreeding on production traits in Walloon Holstein cows. J. Dairy Sci., 90: 465471.CrossRefGoogle ScholarPubMed
Falconer, D.S. & MacKay, T.F.C. (eds) 1996. Introduction to quantitative genetics, 4th edition. Harlow, UK, Longman.Google Scholar
FAO. 1998. Secondary guidelines for development of national farm animal genetic resources management plans. Management of small populations at risk. Rome (available at http://dad.fao.org/cgi-bin/getblob.cgi?sid=-1,50006316).Google Scholar
Frankham, R., Ballou, J.D. & Briscoe, D.A. 2002. Introduction to conservation genetics. Cambridge, UK, Cambridge University Press.Google Scholar
Frisch, J.E., Drinkwater, R., Harrison, B. & Johnson, S. 1997. Classification of the Southern African Sanga and East African shorthorned zebu. Anim. Genet., 28: 7783.Google Scholar
González-Recio, O., López de Maturana, E. & Gutiérrez, J.P. 2007. Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. J. Dairy Sci., 90: 57445752.CrossRefGoogle ScholarPubMed
Gutiérrez, J.P. & Goyache, F. 2005. A note on ENDOG: a computer program for analysing pedigree information. J. Anim. Breed. Genet., 122: 172176.Google Scholar
Gutiérrez, J.P., Altarriba, J., Díaz, C., Quintanilla, R., Cañón, J. & Piedrafita, J. 2003. Pedigree analysis of eight Spanish beef cattle breeds. Genet. Sel. Evol., 35: 4364.Google Scholar
Gutiérrez, J.P., Cervantes, I. & Goyache, F. 2009. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet., 126: 327332.Google Scholar
Gutiérrez, J.P., Cervantes, I. & Goyache, F. 2010. ENDOG v4.8: A computer program for monitoring genetic variability of populations using pedigree information. User's Guide.Google Scholar
Huby, M., Griffon, L., Moureaux, S., De Rochambeau, H., Danchin-Burge, C. & Verrier, É. 2003. Genetic variability of six French meat sheep breeds in relation to their genetic management. Genet. Sel. Evol., 35: 637655.CrossRefGoogle ScholarPubMed
Maignel, L., Boichard, D. & Verrier, É. 1996. Genetic variability of French dairy breeds estimated from pedigree information. Interbull Bull., 14: 4956.Google Scholar
Maiwashe, A.N. & Blackburn, H.D. 2004. Genetic diversity in and conservation strategy considerations for Navajo Churro sheep. J. Anim. Sci., 82: 29002905.Google Scholar
Maiwashe, A.N., Nephawe, K.A., van der Westhuizen, R.R., Mostert, B.E. & Theron, H.E. 2006. Rate of inbreeding and effective population size in four major South African dairy cattle breeds. South Afr. J. Anim. Sci., 36: 5057.Google Scholar
Matjuda, L.E. 2012. Development of breeding objectives for the Nguni cattle breed in South Africa. Ph.D. thesis, Polokwane, South Africa University of Limpopo.Google Scholar
Mc Parland, S., Kearney, J.F., Rath, M. & Berry, D.P. 2007. Inbreeding trends and pedigree analysis of Irish dairy and beef cattle populations. J. Anim. Sci., 85: 322331.Google Scholar
Meuwissen, T.H.E. & Lou, Z. 1992. Computing inbreeding coefficients in large populations. Genet. Sel. Evol., 24: 305313.CrossRefGoogle Scholar
Meuwissen, T.H.E. & Woolliams, J.A. 1994. Effective sizes of livestock populations to prevent a decline in fitness. Theor. Appl. Genet., 89: 10191026.Google Scholar
Meyer, E.H.H. 1984. Chromosomal and biochemical genetic markers of cattle breeds in Southern Africa. In Proceedings of the 2nd World Congress on Sheep and Beef Cattle Breeding, Pretoria, South Africa.Google Scholar
Mokhtari, M.S., Moradi Shahrbabak, M., Esmailizadeh, A.K., Abdollahi-Arpanahi, R. & Gutierrez, J.P. 2013. Genetic diversity in Kerman sheep assessed from pedigree analysis. Small Rumin. Res. 114: 202205.Google Scholar
Moureaux, S., Verrier, É., Ricard, A. & Mériaux, J.C. 1996. Genetic variability within French race and riding horse breeds from genealogical data and blood marker polymorphisms. Genet. Sel. Evol., 28: 83102.Google Scholar
Panetto, J.C.C., Gutiérrez, J.P., Ferraz, J.B.S., Cunha, D.G. & Golden, B.L. 2010. Assessment of inbreeding depression in a Guzerat dairy herd: effects of individual increase in inbreeding coefficients on production and reproduction. J. Dairy Sci., 93: 49024912.Google Scholar
Piccoli, M.L., Braccini Neto, J., Brito, F.V., Campos, L.T., Bértoli, C.D., Campos, G.S., Cobuci, J.A., McManus, C.M., Barcellos, J.O.J. & Gama, L.T. 2014. Origins and genetic diversity of British cattle breeds in Brazil assessed by pedigree analyses. J. Anim. Sci., 92: 19201930.Google Scholar
Santana, M.L. Jr, Oliveira, P.S., Pedrosa, V.B., Eler, J.P., Groeneveld, E. & Ferraz, J.B.S. 2010. Effect of inbreeding on growth and reproductive traits of Nellore cattle in Brazil. Livest. Sci., 131: 212217.CrossRefGoogle Scholar
Scholtz, M.M. (ed.) 2010. Beef breeding in South Africa. Pretoria, South Africa, Agricultural Research Council.Google Scholar
Sørensen, A.C., Sørensen, M.K. & Berg, P. 2004. Inbreeding in Danish dairy cattle breeds. In 55th Annual Meeting of European Association for Animal Production, 5–9 September, Bled, Slovenia.CrossRefGoogle Scholar
Steyn, J.W., Neser, F.W.C., Hunlun, C. & Lubout, P.C. 2012a. Population structure of the Drakensberger cattle breed. In Proceedings of the 45th South African Society of Animal Science Congress, 9–12 July, East London, South Africa.Google Scholar
Steyn, J.W., Neser, F.W.C., Hunlun, C. & Lubout, P.C. 2012b. Preliminary report: pedigree analysis of the Brangus cattle in South Africa. South Afr. J. Anim. Sci., 42: 511514.Google Scholar
Vahlsten, T., Mäntysaari, E.A. & Strandén, I. 2004. Coefficients of relationship and inbreeding among Finnish Ayrshire and Holstein-Friesian. Agric. Food Sci., 13: 338347.Google Scholar
Vicente, A.A., Carolino, N. & Gama, L.T. 2012. Genetic diversity in the Lusitano horse breed assessed by pedigree analysis. Livest. Sci., 148: 1625.Google Scholar