Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T12:13:05.344Z Has data issue: false hasContentIssue false

A preliminary screening of genetic lineage of Nigerian local chickens based on blood protein polymorphisms

Published online by Cambridge University Press:  01 June 2011

M.A. Adeleke*
Affiliation:
Department of Animal Breeding and Genetics, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria
S.O. Peters
Affiliation:
Department of Animal Breeding and Genetics, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA
M.O. Ozoje
Affiliation:
Department of Animal Breeding and Genetics, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria
C.O.N. Ikeobi
Affiliation:
Department of Animal Breeding and Genetics, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria
A.O. Adebambo
Affiliation:
Department of Animal Breeding and Genetics, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria
O. Olowofeso
Affiliation:
Department of Animal Breeding and Genetics, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria
A.M. Bamgbose
Affiliation:
Department of Animal Nutrition, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria
O.A. Adebambo
Affiliation:
Department of Animal Breeding and Genetics, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria
*
Correspondence to: M.A. Adeleke, Department of Animal Breeding and Genetics, PMB 2240, University of Agriculture, Abeokuta 110001, Nigeria. email: maadeleke2003@yahoo.com
Get access

Summary

Blood samples for blood protein analysis were collected from three strains of the Nigerian local chicken (normal feathered, frizzle feathered and naked neck) and one exotic strain (Anak Titan). Each of these populations represents a genotype. Blood samples from 50 birds per genotype were used to assess genetic diversity of the Nigerian local chickens. A total of 18 bands were observed from the four strains during resolution of the proteins using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE). Dendrogram developed from the different bands observed revealed that the strains were clearly separated from one another and mean genetic similarity among the four strains was 55 percent with naked neck strain being the most diverged.

Résumé

Des échantillons de sang pour l'analyse des protéines dans le sang ont été collectées à partir de trois souches de la poule locale du Nigeria (Normal plumes, plumes et Frizzle Naked cou) et une souche exotique (Anak Titan). Chacune de ces populations représente un génotype. Des échantillons de sang de 50 oiseaux par génotype ont été utilisés pour évaluer la diversité génétique des poulets nigérians locaux. Un total de 18 bandes ont été observées dans les quatre souches pendant la résolution des protéines à l'aide de sodium dodécyl sulfate–polyacrylamide (SDS–PAGE). Dendrogramme développé à partir de différentes bandes observées ont révélé que les souches ont été nettement séparés les uns des autres et de dire la similarité génétique entre les quatre souches a été de 55 percent avec la souche cou nu étant le plus divergé.

Resumen

Fueron tomadas muestras de sangre para el análisis proteico en tres variedades de gallinas autóctonas nigerianas (de plumaje normal, de plumaje rizado y de cuello desnudo) y una variedad exótica (Anak Titan). Cada una de estas poblaciones representa un genotipo. Se usaron muestras de sangre de 50 animales por genotipo para valorar la diversidad genética de las gallinas autóctonas nigerianas. Fueron observados un total de 18 grupos a partir de las cuatro variedades durante la resolución de la proteína utilizando electroforesis en gel de poliacrilamida con dodecilsulfato sódico (página de SDS). El dendograma desarrollado desde los diferentes grupos observados reveló que las variedades se encontraban claramente separadas unas de otras y con una semejanza genética media entre las cuatro variedades del 55 percent, siendo la variedad de cuello desnudo las más separada.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumung, R., Simianer, H. & Hoffmann, I. 2004. Genetic diversity studies in farm animals – a survey. J. Anim. Breed. Genet., 121: 361373.CrossRefGoogle Scholar
Dohner, J.V. 2001. The encyclopaedia of historic and endangered livestock and poultry breeds, pp. 15. New Haven, CT, USA, Yale University Press.Google Scholar
Ebozoje, M.O. & Ikeobi, C.O.N. 1995. Productive performance and occurrence of major genes in the Nigerian local chicken. Nigerian J. Genet., 10: 6777.Google Scholar
Erhardt, G. & Weimann, C. 2007. Use of molecular marker for evaluation of genetic diversity and in animal production. Arch. Latinoam. Prod. Anim., 15(Suppl 1): 63.Google Scholar
FAO. 2000. World watch list for domestic animal diversity, Rome, Italy (available at http://www.fao.org/docrep/009/x8750e/x8750e00.HTM) p. 726. 3rd edn.Google Scholar
FAO. 2004. Secondary guidelines. Measurement of domestic animal diversity MoDAD. Newly recommended microsatellite markers. Rome, Italy, FAO (available at http://dad.fao.org/en/refer/library/guidelin/marker.pdf).Google Scholar
FAO. 2006. High bird flu risk in Africa after outbreak in Nigeria. Rome, Italy, Food and Agriculture Organization, FAO (available at http://www.fao.org/nesroom/en/news/2006/1000226/index.html).Google Scholar
FAO. 2007. The state of the world's animal genetic resources for Food and Agriculture Organization. Rome, Italy, FAO (available at ftp://ftp.fao.org/docrep/fao/010/ai772e/ai772e02.pdf,).Google Scholar
FAO. 2009. Status and trends report on animal genetic resources- 2008. Information Document, CGRFA/WG-AnGR-5/09/Inf. 7, Rome (available at http://www.fao.org/ag/againfo/programmes/en/genetics/documents/CGRA_WG_AnGR_5_09_Inf_7.pdf).Google Scholar
Granevitze, Z., Hillel, J., Chen, G.H., Cuc, N.T., Feldman, M., Eding, H. & Weigend, S. 2007. Genetic diversity within chicken populations from different continents and management histories. Anim. Genet., 38(6): 576583.CrossRefGoogle ScholarPubMed
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. 2001. Paleontological statistics software package for educational and data analysis. Palaeontologia Electronica 4(1): 9.Google Scholar
Hoffmann, I. 2005. Research and investment in poultry genetic resource – challenges and options for sustainable use. World's Poult. Sci. J., 61(10): 5770.CrossRefGoogle Scholar
Ibe, S.N. 1993. Growth performance of normal, frizzle feather and naked-neck chickens in a tropical environment. Nig. J. Anim. Prod., 20: 2529.Google Scholar
Ikeobi, C.O.N., Ozoje, M.O., Adebambo, O.A., Adenowo, J.A. & Osinowo, O.A. 1996. Genetic differences in the performance of local chicken in South Western Nigeria. Niger. J. Genet., 11: 3339.Google Scholar
Mina, N. S., Sheldon, B.L., Yoo, B.H. & Frankham, R. 1991. Heterozygosity at protein loci in inbred and outbred lines of chickens. Poult. Sci., 70: 18641872.CrossRefGoogle ScholarPubMed
Mohammed, N.A., El-sayed, E.N., Hamdoon, N.T. & Ame, K.A. 2001. Chicken strains identification using SDS–PAGE page and RAPD-PCR markers. Assiut J. Agri., 32(3): 119 (available at http://www.aun.edu.eg/fac_agr/genetics/cytogent/pdfs/rapd.pdf).Google Scholar
Okamoto, S., Tsunekawa, N., Kawamoto, Y., Worawut, R., Kawabe, K., Maeda, Y. & Nishida, T. 1999. Blood protein polymorphisms of native fowls in Laos. Anim. Sci., 12(7): 10111014.Google Scholar
Peters, S.O., Ikeobi, C.O.N., Ozoje, M.O. & Adebambo, O.A. 2002. Genetic variation in the reproductive performance of the Nigerian indigenous chicken. Trop. Anim. Prod. Investig., 5: 3746.Google Scholar
Peters, S.O., Ikeobi, C.O.N., Ozoje, M.O. & Adebambo, O.A. 2005. Modeling growth in seven chicken genotypes. Niger. J. Anim. Prod., 32: 2838.CrossRefGoogle Scholar
Peters, S.O., Ikeobi, C.O.N., Ozoje, M.O., Famakinwa, O.A., Oshodi, Y.S. & Adebambo, O.A. 2007. Egg quality of the Nigerian local chicken as influence by some major genes. Niger. J. Anim. Prod., 34: 2531.CrossRefGoogle Scholar
Peters, S.O., Shoyebo, O.O., Ilori, B.M., Ozoje, M.O., Ikeobi, C.O.N. & Adebambo, O.A. 2008a. Semen Quality traits of seven strains ofchickens raised in the humid tropics. Int. J. Poult. Sci., 7(10): 949953.CrossRefGoogle Scholar
Peters, S.O., Ilori, B.M., Ozoje, M.O., Ikeobi, C.O.N. & Adebambo, O.A. 2008b. Gene segregation effects on fertility and hatchability of pure and crossbred chicken genotypes in the humid tropics. Int. J. Poult. Sci., 7(10): 954958.CrossRefGoogle Scholar
Romanov, M.N. 1994. Electrophoretic study of the ovoprotein loci in layer populations under improvement of Hisex Brown Cross. In Proc. 1st Int. Conf. “Molecular Genetic Markers of Animals”, Kyiv, Ukraine, pp. 3435.Google Scholar
Sonaiya, E.B. & Olori, V.E. 1990. Village poultry production in south western Nigeria. In Sonaiya, E.B., ed. Rural Poultry in Africa: Proc. of an Int. Workshop held in Ile-Ife, Nigeria, November 13–16, 1989, pp. 243247. Thelia house, Ile-Ife.Google Scholar
Sneath, P.H.A. & Sokal, R.R.K. 1973. Numeric taxonomy. San Francisco, Freeman and Co. pp. 13.Google Scholar
Wekhe, S.N. 1992. Susceptibility of indigenous (Nigerian) and exotic (Harco) chickens to fowl typhoid infection. Trop. Vet, 10: 12.Google Scholar
Wimmers, K., Ponsuksili, S., Hardge, T., Valle-Zarate, A., Mathur, P.K. & Horst, P. 2000. Genetic distinctness of African, Asian and South American local chickens. Anim. Genet., 31: 159165.CrossRefGoogle ScholarPubMed