Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T23:58:05.038Z Has data issue: false hasContentIssue false

Creole cattle from northwestern Mexico has high genetic diversity in the locus DRB3.2

Published online by Cambridge University Press:  29 June 2015

I.G. Fernández*
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, México Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, México
I. Leyva-Baca
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, México
F. Rodríguez-Almeida
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, México
R. Ulloa-Arvizu
Affiliation:
Universidad Nacional Autónoma de México, D.F., México
J.G. Ríos-Ramírez
Affiliation:
Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, México
A. Gayosso-Vázquez
Affiliation:
Universidad Nacional Autónoma de México, D.F., México
R.A. Alonso-Morales
Affiliation:
Universidad Nacional Autónoma de México, D.F., México
*
Correspondence to: I.G. Fernández, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, México. email: ilda.fernandez@uaaan.mx
Get access

Summary

The objective of this study was to determine the genetic diversity of creole cattle in northwestern Mexico using the BoLA-DRB3.2 locus of the Major Histocompatibility Complex (MHC). A total of 56 creole cattle were sampled from five communities; in the state of Chihuahua (Cerocahui, Guadalupe y Calvo and Cuauhtémoc) and in the state of Baja California Sur (La Paz and Mulegé). The BoLA-DRB3.2 locus was genotyped by PCR-RFLP assay. Thirty-nine alleles were identified, out of which 14 had not been previously reported. The average level of inbreeding in all populations analyzed was FIS = 0.09 (P < 0.0001), but only two populations (Cerocahui and Guadalupe y Calvo) showed an excess of homozygotes (P < 0.05). The breed differentiation in all populations studied was FSC = 0.068 (P < 0.0001). The smallest genetic distance was between La Paz and Mulegé (0.022); but Mulegé presented smaller distances (0.028–0.053) with the populations of La Paz (0.071–0.083) and with Chihuahua. Baja California Sur populations are grouped in a separate branch than Chihuahua populations. We conclude that creole cattle from Baja California Sur and Chihuahua show high genetic diversity in the locus BoLA-DRB3.2.

Résumé

L'objectif de l’étude était de déterminer la diversité génétique des bovins créoles originaires du Nord-Ouest du Mexique en utilisant le locus DRB3.2 du complexe majeur d'histocompatibilité (MHC). Des échantillons de sang de 56 bovins créoles dans cinq endroits de l’État de Chihuahua (Cerocahui, Guadalupe y Calvo et Cuauhtémoc) et dans l’État de Baja California Sur (La Paz et Mulegé) ont été prélevés. Le locus BoLA-DRB3.2 a été génotypé en utilisant la technique PCR-RFLP. Trente-neuf allèles ont été identifiés, dont 14 avaient déjà été signalés. La différenciation génétique des populations étudiées était de FSC = 0,068 (P < 0.0001). Le niveau moyen de consanguinité dans les populations analysées était de FIS = 0.09 (P < 0.0001) mais seulement deux populations (Cerocahui et Guadalupe y Calvo) ont présenté un excès d'homozygotes (P < 0.05). La distance génétique la plus petite s'est observée entre La Paz et Mulegé (0.022); mais aussi, Mulegé a présenté de plus courtes distances (0.028–0.053) avec les populations de La Paz (0.071–0.083) et Chihuahua. Les populations de Baja California Sur sont regroupées dans une branche distincte des populations de Chihuahua. Nous concluons que le locus BoLA-DRB3.2 possède une grande diversité génétique chez les bovins créoles originaires de Chihuahua et Baja California Sur.

Resumen

El objetivo del presente estudio fue determinar la diversidad genética del bovino criollo del noroeste de México utilizando el locus DRB3.2 del Complejo Principal de Histocompatibilidad (MHC). Se tomaron muestras sanguíneas de cincuenta y seis bovinos criollos en cinco localidades; en el estado de Chihuahua (Cerocahui, Guadalupe y Calvo y Cuauhtémoc) y en el estado de Baja California Sur (La Paz y Mulegé). El locus BoLA-DRB3.2 fue genotipificado mediante la técnica PCR-RFLP. Se identificaron 39 alelos, de los cuales 14 alelos no habían sido reportados previamente. El nivel de consanguinidad promedio en todas las poblaciones analizadas fue FIS = 0.09 (P < 0.0001) pero sólo dos poblaciones (Cerocahui y Guadalupe y Calvo) presentaron exceso de homocigosis (P < 0.05). La diferenciación genética entre las poblaciones estudiadas fue FSC 0.068 (P < 0.0001). Las distancias genéticas más cortas fueron entre La Paz y Mulegé (0.022); además, la población de Mulegé presentó las distancias genéticas más cortas (0.028–0.053) con las poblaciones de La Paz (0.071–0.083) y con Chihuahua. Las poblaciones de Baja California se agruparon en una rama aparte de las poblaciones de Chihuahua. Se concluye que los bovinos criollos de Chihuahua y Baja de California mostraron alta diversidad genética en el locus BoLA-DRB3.2.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baltian, L.R., Ripoli, M.V., Sanfilippo, S., Takeshima, S.N., Aida, Y. & Giovambattista, G. 2012. Association between BoLA-DRB3 and somatic cell count in Holstein cattle from Argentina. Mol. Biol. Reprod., 39: 72157220.Google Scholar
Behl, J.D., Verma, N.K., Behl, R., Mukesh, M. & Ahlawat, S.P.S. 2007. Characterization of genetic polymorphism of the bovine lymphocyte antigen DRB3.2 locus in Kankrej cattle (Bos indicus). J. Dairy Sci., 90: 29973001.Google Scholar
da Mota, A.F., Gabriel, J.E., Martinez, M.L. & Coutinho, L.L. 2002. Distribution of bovine lymphocyte antigen (BoLA-DRB3) alleles in Brazilian dairy Gyr cattle (Bos indicus). Eur. J. Immunogenet., 29: 223227.Google Scholar
Davies, C.J., Joosten, I., Anderson, L., Arriens, M.A., Bernoco, D., Bissumbhar, B., Byrns, G., van Eijk, M.K., Kristensen, B. & Lewin, H.A. 1994. Polymorphism of bovine MHC class II genes. Joint report of the Fifth International Bovine Lymphocyte Antigen (BoLA) Workshop, Interlaken, Switzerland, 1 August 1992. Eur. J. Immunogenet., 21: 259289.CrossRefGoogle ScholarPubMed
de Alba, J. 1987. Criollo cattle in Latin America. In Hodges, J. (ed.), Animal genetic resources: strategies for improved use and conservation. FAO Animal production and Health Paper 66. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 1944.Google Scholar
Delgado, J.V., Martínez, A.M., Acosta, A., Alvarez, L.A., Armstrong, E., Camacho, E., Cañón, J., Cortés, O., Dunner, S., Landi, V., Marques, J.R., Martín-Burriel, I., Martínez, O.R., Martínez, R.D., Melucci, L., Muñoz, J.E., Penedo, M.C.T., Postiglioni, A., Quiróz, J., Rodellar, C., Sponenberg, P., Uffo, O., Ulloa-Arvizu, R., Vega-Pla, J.L., Villalobos, A., Zambrano, D., Zaragoza, P., Gama, L.T. & Ginja, C. 2012. Genetic characterization of Latin-American Creole cattle using microsatellite markers. Anim. Genet., 43: 210.Google Scholar
Dietz, A.B., Cohen, N.D., Timms, L. & Kehrli, M.E. Jr 1997. Bovine lymphocyte antigens class II alleles as risk factors for high somatic cell counts in milk of lactating dairy cows. J. Dairy Sci., 80: 406412.CrossRefGoogle ScholarPubMed
Espinoza Villavicencio, J.L., Guevara Franco, J.A. & Palacios Espinoza, A. 2009. Caracterización morfométrica y faneróptica del bovino criollo chinampo de México. Archivos de Zootecnia, 58: 277279.Google Scholar
Excoffier, L., Smouse, P.E. & Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479491.Google Scholar
Excoffier, L., Laval, G. & Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online, 1: 4750.Google Scholar
Fernández, I.G., Ríos Ramírez, J.G., Gayosso Vázquez, A., Ulloa-Arvizu, R. & Alonso Morales, R.A. 2008. Polymorphism of locus DRB3.2 in populations of Creole cattle from Northern Mexico. Genet. Mol. Biol., 31: 880886.Google Scholar
Gelhaus, A., Schnittger, L., Mehlitz, D., Horstmann, R. & Meyer, C. 1995. Sequence and PCR-RFLP analysis of 14 novel BoLA-DRB3 alleles. Anim. Genet., 26: 147153.CrossRefGoogle ScholarPubMed
Gilliespie, B.E., Jayarao, B.M., Dowlen, H.H. & Oliver, S.P. 1999. Analysis and frequency of bovine lymphocyte antigen DRB3.2 alleles in Jersey cows. J. Dairy Sci., 82: 2049.Google Scholar
Ginja, C., Melucci, L., Quiroz, J., Martínez López, R., Revidatti, M.A., Martínez-Martínez, A., Delgado, J.V., Penedo, M.C.T. & Gama, L.T. 2009. Origins and genetic diversity of New World Creole cattle: inferences from mitochondrial and Y chromosome polymorphisms. Anim. Genet., 41: 128141.Google Scholar
Giovambattista, G., Golijow, C.D., Dulont, F.N. & Lojo, M.M. 1996. Gene frequencies of DRB3.2 locus of Argentine creole cattle. Anim. Genet., 27: 5556.CrossRefGoogle ScholarPubMed
Giovambattista, G., Takesima, S.N., Ripoli, M.V., Matsumoto, Y., Franco, L.A., Saito, H., Onuma, M. & Aida, Y. 2013. Characterization of bovine MHC DRB3 diversity in Latin America Creole cattle breeds. Gene, 519: 150158.Google Scholar
Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet (1995) (available at http://www2.unil.ch/popgen/softwares/fstat.htm).Google Scholar
Guo, S.W. & Thompson, E.A. 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics, 48: 361372.Google Scholar
Hughes, A.L. & Nei, M. 1989. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. U. S. A., 86: 958962.Google Scholar
Huson, D. & Bryant, D. 2006. Applications of phylogenetics networks in evolutionary studies. Mol. Biol. Evol., 23: 254267.Google Scholar
IPD. (2003). Immuno Polymorphism Database BoLA-DRB (available at http://www.ebi.ac.uk/cgi-bin/ipd/mhc/view_nomenclature.cgi?bola.drb3).Google Scholar
Kelly, L., Nicolini, P., D́Angelo, M., Nimo, A., Rincón, G., Piaggio, J. & Postiglioni, A. 2003. Polimorfismo de gen DRB3.2 en bovinos criollos del Uruguay. Archivos de Zootecnia, 52: 7780.Google Scholar
Kelm, S.C., Deitilleux, J.C., Freeman, A.E., Kehrli, M.E. Jr, Dietz, A.B., Fox, L.K., Butler, J.E., Kasckovics, I. & Kelly, D.H. 1997. Genetic association between parameters of innate immunity and measures of mastitis in periparturient Holstein cattle. J. Dairy Sci., 80: 17671775.Google Scholar
Kulberg, S., Heringstad, B., Guttersrud, O.A. & Olsaker, I. 2007. Study on the association of BoLA-DRB3.2 alleles with clinical mastitis in Norwegian Red cows. J. Anim. Breed. Genet., 124: 201207.CrossRefGoogle Scholar
Lewin, H.L. 1989. Disease resistance and immune response genes in cattle: strategies for their detection and evidence of their existence. J. Dairy Sci., 72: 13241348.CrossRefGoogle ScholarPubMed
Maillard, J.C., Renard, C., Chardon, P., Chantal, I. & Bensaid, A. 1999. Characterization of 18 new BoLA-DRB3 alleles. Anim. Genet., 30: 200203.Google Scholar
Male, D., Brostoff, J., Roth, D.B. & Roitt, I.M. 2013. Inmunología. Octava edición. Elsevier España, S.L. Barcelona, España, pp. 102.Google Scholar
Martínez, M.L., Machado, M.A., Nascimento, C.S., Silva, M.V.G.B., Teodoro, R.L., Furlong, J., Prata, M.C.A., Campos, A.L., Guimarāes, M.F.M., Azevedo, A.L.S., Pires, M.F.M. & Verneque, R.S. 2006. Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. Genet. Mol. Res., 5: 513524.Google ScholarPubMed
Martínez, R., Toro, R., Montoya, F., Burbano, M., Tobón, J., Gallego, J. & Ariza, F. 2005. Caracterización del locus BoLa-DRB3 en ganado criollo colombiano y asociación con resistencia a enfermedades. Archivos de Zootecnia 54: 349356.Google Scholar
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A., 70: 33213323.Google Scholar
Pashmi, M., Qanbari, S., Ghorashi, S.A., Sharifi, A.R. & Simianer, H. 2009. Analysis of relationship between bovine lymphocyte antigen DRB3.2 alleles, somatic cell count and milk traits in Iranian Holstein populations. J. Anim. Breed. Genet., 126: 296303.Google Scholar
Postiglioni, A., Rincón, G., Kelly, L., Llambi, S., Fernández, G., D'Angelo, M., Gagliardi, G., Trujillo, J., de Bethencourt, M, Guevara, K., Castellano, A. & Arruga, M.V. 2002. Biodiversidad genética en bovinos criollos del Uruguay. Análisis con marcadores moleculares. Archivos de Zootecnia, 51: 195202.Google Scholar
Primo, A.T. 1992. El Ganado bovino ibérico en las Américas: 500 años después. Archivos de Zootecnia, 41: 421432.Google Scholar
Raymond, M. & Rousset, F. 1995. GENEPOP, v. 1.2: Population genetics software for exact tests and ecumenicism. J. Hered., 86: 248249.Google Scholar
Reynolds, J., Weir, B.S. & Cockerham, C.C. 1983. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105: 767779.Google Scholar
Ríos Ramírez, J.G., Rodríguez Almeida, F.A., Espinoza Villavicencio, J.L. & Fierro, L.C. 1998. Los criollos para rodeo y su contribución hacia la sustentabilidad de los sistemas de producción. In IV Congreso Iberoamericano de Razas Autóctonas y Criollas. Tampico, Tamaulipas, México, pp. 198204.Google Scholar
Ripoli, M.V., Lirón, J.P., De Luca, J.C., Rojas, F., Dulout, F.N. & Giovambattista, G. 2004. Gene frequency distribution of the BoLA-DRB3 locus in Saavedreño creole dairy cattle. Biochem. Genet., 42: 231240.Google Scholar
Rouse, J.E. 1977. The Criollo, Spanish Cattle in the Americas. University of Oklahoma Press, Norman, pp. 303.Google Scholar
Sadeghi, B., Nassiry, M.R., Heydarpour, M., Shahroudi, F.E., Mosafer, J. & Motagh, A.S. 2008. Characterization of genetic polymorphism of the bovine lymphocyte antigen DRB3.2 locus in Sistani cattle of Iran (Bos indicus). Biotechnology, 7: 333337.Google Scholar
SAGARPA. 2014. Comité Nacional del Sistema Producto Bovinos de Carne: Estadísticas Básicas. Censo Agropecuario 2007; VIII Censo Agrícola, Ganadero y Forestal. INEGI (available at http://www.lactodata.com/cnspbc/cnspbcProdMex_estr.php).Google Scholar
Ulloa-Arvizu, R., Montaño, M., Gayosso-Vázquez, A., Ramos-Kuri, M., Estrada, F.J. & Alonso, R.A. 2008. Genetic analysis of mexican criollo cattle populations. J. Anim. Breed. Genet., 125: 351359.Google Scholar
van Eijk, M.J.T., Stewart-Haynes, J.A. & Lewin, H.A. 1992. Extensive polymorphisms of the BoLA-DRB3 gene distinguished by PCR-RFLP. Anim. Genet., 23: 483496.Google Scholar
Weir, B.S. & Cockerham, C.C. 1984. Estimating F-statistics for the analysis of populations structure. Evolution, 38: 13581370.Google Scholar
Yoshida, T., Mukoyama, H., Furuta, H., Holmes, C.W., Kosugiyama, M. & Tomogane, H. 2008. Allelic frequency of PCR-RFLP type of the BoLA-DRB3 in Japanese Holstein herds and the relation to mastitis. Anim. Sci. J., 79: 409416.Google Scholar