Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T15:25:49.093Z Has data issue: false hasContentIssue false

Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part I: animal excretion and enteric CH4, effect of feeding and performance

Published online by Cambridge University Press:  22 March 2010

C. Rigolot*
Affiliation:
INRA, UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35000 Rennes, France IFIP-Institut du Porc, F-35651 Le Rheu, France INRA, UMR1080 Production du Lait, F-35000 Rennes, France
S. Espagnol
Affiliation:
IFIP-Institut du Porc, F-35651 Le Rheu, France
C. Pomar
Affiliation:
Agriculture and Agro-Food Canada, Dairy and Swine Research and Development Centre, C.P. 90, Lennoxville, J1M 1Z3 Québec, Canada
J.-Y. Dourmad
Affiliation:
INRA, UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35000 Rennes, France
Get access

Abstract

A mathematical model was developed from literature data to predict the volume and composition of pig’s excreta (dry and organic matter, C, N, P, K, Cu and Zn contents), and the emission of greenhouse gases (CH4 and CO2) though respiration and from the intestinal tract, for each physiological stage (post-weaning and fattening pigs and lactating and gestating sows). The main sources of variation considered in the model are related to animal performances (feed efficiency, prolificacy, body weight gain, etc.), to water and nutrient intakes and to housing conditions (ambient temperature). Model predictions were validated by using 19 experimental studies, most of them performed in conditions close to those of commercial farms. Validation results showed that the model is precise and robust when predicting slurry volume (R2 = 0.96), slurry N (R2 = 0.91), P (R2 = 0.95) and to a lesser extent dry matter (R2 = 0.75) contents. Faeces and urine composition (minerals and macronutrients) can also be precisely assessed, provided the composition and the digestibility of the feed are well known. Sensitivity analysis showed strong differences in CH4 emission and excretion amounts and composition according to physiological status, animal performance, temperature and diet composition. The model is an efficient tool to calculate nutrient balances at the animal level in commercial conditions, and to simulate the effect of production alternatives, such as feeding strategy or animal performance, on excreta production and composition. This is illustrated by simulations of three feeding strategies, which demonstrates important opportunities to limit environmental risks through diet manipulations.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarnink, AJA, Ouwerkerk, ENJ, Verstegen, MWA 1992. A mathematical model for estimating the amount and composition of slurry from fattening pigs. Livestock Production Science 31, 133147.CrossRefGoogle Scholar
Albar, J, Granier, R 1996. Incidence du taux azoté de l’aliment sur la consommation d’eau, la production de lisier et les rejets azotés en engraissement. Journées de la Recherche Porcine en France 28, 257266.Google Scholar
Basset-Mens, C, Van der Werf, H 2005. Scenario-based environmental assessment of farming systems: the case of pig production in France. Agriculture, Ecosystems and Environment 105, 127144.CrossRefGoogle Scholar
Besançon, P, Gueguen, L 1969. Les principales voies du métabolisme calcique chez le porc en croissance. Annales de Biologie Animale Biochimie Biophysique 9, 537553.CrossRefGoogle Scholar
Bertrand, M, Arroyo, G 1983. Mise au point d’une méthode d’appréciation de la qualité des lisiers de porc. Etude n° 8. Editions CEMAGREF, Rennes, France.Google Scholar
Castaing, J, Cazaux, JG, Coudure, R, Tucou, M 1997. Utilisation de phytase microbienne dans des aliments à base de maïs humide pour le porc charcutier. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 29, 285292.Google Scholar
Chauvel, J, Granier, R 1994. Incidence de l’utilisation d’aliments à taux azotés décroissant sur les performances zootechniques et les rejets du porc charcutier. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA, 26, 97106.Google Scholar
Chauvel, J, Granier, R 1996. Effet de l’alimentation multiphase sur la croissance et les rejets azotés du porc charcutier. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 28, 249256.Google Scholar
Chauvel, J, Granier, R, Jondreville, C, Williate, I 1997. Utilisation de régimes isophosphorés à activité phytasique variable par le porc charcutier. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 29, 277284.Google Scholar
Chosson, C, Granier, R, Maigne, A, Bouby, A, Mongin, JP 1988. Réduction du volume de lisier produit par un porc à l’engrais. Techni-Porc 11, 2741.Google Scholar
International Commission of Agricultural Engineering, Section 2 (CIGR) 1984. Report of working group on climatisation of animal houses, Commission Internationale du Génie Rural, Aberdeen, UK.Google Scholar
De Greef, KH, Verstegen, MWA 1995. Evaluation of a concept on energy partitioning in growing pigs. In Modelling growth in the pig (ed. PJ Moughan, MWA Verstegen and MI Visser-Reyneveld), pp. 137149. Wageningen Academic Publishing, Wageningen, The Netherlands.Google Scholar
Dourmad, JY, Guillou, D, Noblet, J 1992. Development of a calculation model for predicting the amount of N excreted by the pig: effect of feeding, physiological stage and performance. Livestock Production Science 31, 95107.CrossRefGoogle Scholar
Dourmad, JY, Etienne, M, Noblet, J, Causeur, D 1997. Prédiction de la composition chimique des truies reproductrices à partir du poids vif et de l’épaisseur de lard dorsal. Application à la définition des besoins énergétiques. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 29, 255262.Google Scholar
Food and Agriculture Organization of the United Nations (FAO) 2006. Livestock long shadow. Environmental issues and options. Animal production and health division, FAO, Rome, Italy.Google Scholar
Ferket, PR, Van Heugten, E, van Kempen, T, Angel, R 2002. Nutritional strategies to reduce environmental emissions from nonruminants. Journal of Animal Science 80, 168182.CrossRefGoogle Scholar
Goss, MJ, Ogilvie, JR, Stonehouse, DP 1999. Developing a decision support system for manure management. 8th Ramiran international conference on management strategies for organic waste use in agriculture, Rennes, France. pp. 25–35. Editions CEMAGREF, Anthony, France.Google Scholar
Granier, R, Texier, C 1993. Production de lisier du porc à l’engrais: quantité et qualité. Techni-Porc 16, 2331.Google Scholar
Guingand, N, Granier, R 2001. Comparaison caillebotis partiel et caillebotis intégral en engraissement, effet sur les performances zootechniques et sur l’émission d’ammoniac. Journées de la Recherche Porcine en France 33, 3136.Google Scholar
Hendriks, WH, Moughan, PJ 1993. Whole-body mineral composition of entire male and female pigs depositing protein at maximal rates. Livestock Production Science 33, 161170.CrossRefGoogle Scholar
Henrich, P 1994. Einfluβ einer eiweiβreduzierten Fütterung von Mastschweinen au die Stickstoffbilanzen sowie die Mast- und Schlachtleistungen. Dissertation, Kiel University, Germany.Google Scholar
Institut National de Recherche Agronomique, Association Française de Zootechnie et Institut National Agronomique Paris-Grignon ( INRA-AFZ-INAPG) 2004. Tables of composition and nutritional value of feed material (ed. D Sauvant, JM Perez and G Tran). Wageningen Academic Publishing, Wageningen, The Netherlands.Google Scholar
Intergovernmental Panel on Climate Change (IPCC) 2006. 2006 IPCC Guidelines for national greenhouse gas inventories, Prepared by the national greenhouse gas inventories programme (ed. HS Eggleston, L Buendia, K Miwa, T Ngara and K Tanabe). IGES, Hayama, Japan.Google Scholar
Jondreville, C, Revy, PS, Dourmad, JY 2003. Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livestock Production Science 84, 147156.CrossRefGoogle Scholar
Jondreville, C, Revy, PS, Dourmad, JY, Nys, Y, Hillion, S, Pontrucher, F, Gonzalez, J, Soler, J, Lizardo, R, Tibau, J 2004. Influence du sexe et du génotype sur la rétention corporelle de calcium, phosphore, potassium, sodium, magnésium, fer, zinc et cuivre chez le porc de 25 à 135 kg de poids vif. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 36, 1724.Google Scholar
Jongbloed, AW 1987. Phosphorus in the feeding of pigs, effect of diet on the absorption and retention of phosphorus by growing pigs. PhD Diss, Wageningen University, The Netherlands.Google Scholar
Jongbloed, AW 1991. Developments in the production and composition in manure from pigs and poultry. In Mest & milieu in 2000 (ed. HAC Verkerk). Dienst Landbouwkundig Onderzoek, Wageningen, The Netherlands.Google Scholar
Jongbloed, AW, Everts, H, Kemme, PA, Mroz, Z 1999. Quantification of absorbability and requirements of macroelements. In Quantitative biology of the pig (ed. I Kyriazakis), pp. 275298. CABI Publishing, Wallingford, UK.Google Scholar
Kirchgessner, M, Kreuzer, M, Roth, FX 1994. Alter- und Geschlechtskedingste Untershiede in den Gehalten an Fe, Zn, Cu und Mn vershiedener Körperpartien sovie ihre Retention bei Mastschweinen. Archiv Fur Tierernahrung 46, 327337.CrossRefGoogle Scholar
Lange, K, Nyachoti, M, Birkett, S 1999. Manipulation of diets to minimise the contribution to environmental pollution. Advances in Pork Production 10, 173186.Google Scholar
Latimier, P, Chatelier, C 1992. Effet de trois profils azotés sur les performances et les rejets du porc charcutier. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 24, 227236.Google Scholar
Latimier, P, Pointillart, A 1993. Influence de l’apport de phosphore (0,4–0,5–0,6%) sur les performances, les rejets de phosphore et la minéralisation osseuse chez le porc charcutier. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 25, 277286.Google Scholar
Latimier, P, Dourmad, JY, Corlouër, A 1993. Incidence, sur les performances et les rejets azotés du porc charcutier, de trois conduites alimentaires différentiées par l’apport de protéines. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 25, 295300.Google Scholar
Latimier, P, Pointillart, A, Corlouër, A, Lacroix, H 1994. Influence de l’incorporation de phytase microbienne dans les aliments, sur les performances, la résistance osseuse et les rejets phosphorés chez le porc charcutier. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 26, 107116.Google Scholar
Latimier, P, Gallard, F, Corlouër, A 1996. Actualisation des volumes et des quantités d’azote, de phosphore et de potasse rejetés dans le lisier par un élevage naisseur-engraisseur. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 28, 241248.Google Scholar
Le Goff, G, Noblet, J 2001. Utilisation digestive comparée de l’énergie des aliments chez le porc en croissance et la truie adulte. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 33, 211220.Google Scholar
Levasseur, P 1998. Facteurs de variation du niveau des rejets et du volume de lisier produit par le porc. Techni-Porc 21, 1929.Google Scholar
Levasseur, P, Texier, C 2001. Teneur en éléments-trace métalliques des aliments et des lisiers de porcs à l’engrais, de truies et de porcelets. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 33, 5762.Google Scholar
Levasseur, P, Charles, M, Le Bris, B, Boulestreau, AL, Landrain, P, Athanase, N 2007. Comparaison de méthodes d’estimation des rejets d’azote, de phosphore et de potassium en élevage de porc. et 39e Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 38, 16.Google Scholar
Mahan, DC, Newton, EA 1995. Effect of initial breeding weight on macro- and micromineral composition over three-parity period using a high-producing genotype. Journal of Animal Science 73, 151158.CrossRefGoogle Scholar
Mahan, DC, Shields, RGJ 1998. Macro- and micromineral composition of pigs from birth to 145 kilograms of body weight. Journal of Animal Science 76, 506512.CrossRefGoogle ScholarPubMed
Manners, MJ, McCrea, MR 1963. Changes in the chemical composition of sow-reared piglets during the first month of life. British Journal of Nutrition 17, 495513.CrossRefGoogle Scholar
Mudd, AJ, Smith, WC, Armstrong, DG 1969. The influence of dietary concentration of calcium and phosphorus on their retention in the body of the growing pig. Journal of Agricultural Science 73, 189196.CrossRefGoogle Scholar
Myer, RO, Barnett, RD, Cornell, JA, Combs, GE 1989. Nutritive value of diets containing triticale and varying mixtures of triticale and maize for growing-finishing swine. Animal Feed Science and Technology 22, 217225.CrossRefGoogle Scholar
Nahm, KH 2002. Efficient feed nutrient utilisation to reduce pollutants in poultry and swine manure. Critical Reviews in Environmental Science and Technology 32, 116.CrossRefGoogle Scholar
Noblet, J, Etienne, M 1987. Body composition, metabolic rate and utilisation of milk nutrients in suckling piglets. Reproduction Nutrition Development 27, 829839.CrossRefGoogle ScholarPubMed
Noblet, J, Shi, XS 1994. Effect of body weight on digestive utilisation of energy and nutrients of ingredients and diets in pigs. Livestock Production Science 37, 323338.CrossRefGoogle Scholar
Noblet, J, Dourmad, JY, Le Dividich, J, Dubois, S 1989. Effect of ambient temperature and addition of straw or alfalfa in the diet on energy metabolism in pregnant sows. Livestock Production Science 21, 309324.CrossRefGoogle Scholar
Noblet, J, Dourmad, JY, Etienne, M 1990. Energy utilisation in pregnant and lactating sows: modelling of energy requirements. Journal of Animal Science 68, 562572.CrossRefGoogle ScholarPubMed
Noblet, J, Seve, B, Jondreville, C 2004. Nutritional value for pigs. In Tables of composition and nutritional value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses, fish (ed. D Sauvant, JM Perez and G Tran), pp. 2535. INRA Editions, Versailles, France.CrossRefGoogle Scholar
Oliveira, PA 1999. Comparaison des systèmes d’élevage des porcs sur litière de sciure ou caillebotis intégral. PhD, ENSA de Rennes, France.Google Scholar
Paboeuf, F, Nys, Y, Corlouër, A 2000. Réduction des rejets en cuivre et en zinc chez le porc charcutier par la diminution de la supplémentation minérale. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 32, 5966.Google Scholar
Pfeiffer, A, Henkel, H, Verstegen, MWA, Philipczyk, I 1995. The influence of protein intake on water balance, flow rate and apparent digestibility of nutrients at the distal ileum in growing pigs. Livestock Production Science 44, 179187.CrossRefGoogle Scholar
Pomar, C, Jondreville, C, Dourmad, JY, Bernier, J 2006. Influence du niveau de phosphore des aliments sur les performances zootechniques et la rétention corporelle de calcium, phosphore, potassium, sodium, magnésium, fer et zinc chez le porc de 20 à 100 kg de poids vif. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 38, 209216.Google Scholar
Pomar, C, Dubeau, F, Létourneau-Montminy, MP, Boucher, C, Julien, PO 2007. Reducing phosphorus concentration in pig diets by adding an environmental objective to the traditional feed formulation algorithm. Livestock Science 111, 1627.CrossRefGoogle Scholar
Poulsen, HD 1998. Zinc and copper as feed additives, growth factors or unwanted environmental factors. Journal of Animal Feed Science 7, 135142.CrossRefGoogle Scholar
Quiniou, N, Noblet, J, Dourmad, JY 1993. Influence de l’administration de somatotropine porcine et d’une réduction du taux protéique du régime sur les rejets d’azote et de phosphore chez le porc. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 25, 287294.Google Scholar
Quiniou, N, Noblet, J, Van Milgen, J, Dubois, S 2001. Modélisation de la production de chaleur chez le porc en croissance logé en groupe et exposé à des températures ambiante de 12°C à 29°C. Journées de la Recherche Porcine, Paris, France. Editions ITP-INRA 33, 2530.Google Scholar
Rigolot, C, Espagnol, E, Robin, P, Hassouna, M, Beline, F, Paillat, JM, Dourmad, JY 2010. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices (in press).Google ScholarPubMed
Rymarz, A 1986. Chemical body composition of growing pigs. Ca, P, K, Na and Mg contents in the body. Pig News Info 7, 171177.Google Scholar
Rymarz, A, Fandrejewsky, H, Kielanowski, J 1982. Content and retention of calcium, phosphorus, potassium and sodium in the bodies of growing gilts. Livestock Production Science 9, 399407.CrossRefGoogle Scholar
Simons, PC, Versteegh, H, Jongbloed, AW, Kemme, PA, Slump, P, Bos, KD, Wolters, M, Beudeker, RF, Verschoor, GJ 1990. Improvement of phosphorus avaibility by microbial phytase in broilers and pigs. British Journal of Nutrition 64, 525540.CrossRefGoogle Scholar
Valaja, J, Siljander-Rasi, H 1998. Effect of dietary crude protein and energy content on nitrogen utilisation, water intake and urinary output in growing pigs. Agricultural and Food Science in Finland 7, 381390.CrossRefGoogle Scholar