Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T06:06:32.901Z Has data issue: false hasContentIssue false

Meat quality of farmed red deer fed a balanced diet: effects of supplementation with copper bolus on different muscles

Published online by Cambridge University Press:  23 August 2018

M. P. Serrano*
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain
A. Maggiolino
Affiliation:
Department of Veterinary Medicine, University of Bari A. Moro, S.P.per Casamassimakm 3, 70010Valenzano, Bari, Italy
J. M. Lorenzo
Affiliation:
Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia (Rúa Galicia 4), San Cibrán das Viñas, 32900 Ourense, Spain
P. De Palo
Affiliation:
Department of Veterinary Medicine, University of Bari A. Moro, S.P.per Casamassimakm 3, 70010Valenzano, Bari, Italy
A. García
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain
T. Landete-Castillejos
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain
P. Gambín
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain
J. Cappelli
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain
R. Domínguez
Affiliation:
Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia (Rúa Galicia 4), San Cibrán das Viñas, 32900 Ourense, Spain
F. J. Pérez-Barbería
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain
L. Gallego
Affiliation:
Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes of Universidad de Castilla-La Mancha (Campus Universitario sn), 02071 Albacete, Spain
*
Get access

Abstract

Supplementation with copper (Cu) improves deer antler characteristics, but it could modify meat quality and increase its Cu content to levels potentially harmful for humans. Here, we studied the effects of Cu bolus supplementation by means on quality and composition of sternocephalicus (ST) and rectus abdominis (RA) muscles (n=13 for each one) from yearling male red deer fed with a balanced diet. Each intraruminal bolus, containing 3.4 g of Cu, was administered orally in the treatment group to compare with the control group. Meat traits studied were pH at 24 h postmortem (pH24), colour, chemical composition, cholesterol content, fatty acid (FA) composition, amino acid (AA) profile and mineral content. In addition, the effect of Cu supplementation on mineral composition of liver and serum (at 0 and 90 days of treatment) was analysed. No interactions between Cu supplementation and muscle were observed for any trait. Supplementation with Cu increased the protein content of meat (P<0.01). However, Cu content of meat, liver and serum was not modified by supplementation. In fact, Cu content of meat (1.20 and 1.34 mg/kg for Cu supplemented and control deer, respectively) was much lower in both groups than 5 mg/kg of fresh weight allowed legally for food of animal origin. However, bolus of Cu tended to increase the meat content of zinc and significantly increased (P<0.05) the hepatic contents of sodium and lead. Muscles studied had different composition and characteristics. The RA muscle had significantly higher protein content (P<0.001), monounsaturated FA content (P<0.05) and essential/non-essential AA ratio (P<0.01) but lower pH24 (P<0.01) and polyunsaturated FA content (P=0.001) than the ST muscle. In addition, RA muscle had 14.4% less cholesterol (P=0.001) than ST muscle. Also, mineral profile differed between muscles with higher content of iron, significantly higher (P<0.001) content of zinc and lower content of calcium, magnesium and phosphorus (P<0.05) for ST muscle compared with RA. Therefore, supplementation with Cu modified deer meat characteristics, but it did not increase its concentration to toxic levels, making it a safe practice from this perspective. Despite the lower content of polyunsaturated FA, quality was better for RA than for ST muscle based on its higher content of protein with more essential/non-essential AA ratio and lower pH24 and cholesterol content.

Type
Research Article
Copyright
© The Animal Consortium 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists 2000. Official methods of analysis, 17th edition. AOAC, Arlington, VA, USA.Google Scholar
Audigé, L, Wilson, PR and Morris, RS 1998. A body condition score system and its use for farmed red deer hinds. New Zealand Journal of Agricultural Research 41, 545553.Google Scholar
Bligh, EG and Dyer, WJ 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911917.Google Scholar
Bureš, D, Barton, L, Kotrba, R and Hakl, J 2015. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). Journal of the Science of Food and Agriculture 95, 22992306.Google Scholar
Cashman, KD 2006. Milk minerals (including trace elements) and bone health. International Dairy Journal 16, 13891398.Google Scholar
Council Regulation EC No 149 2008. Council Regulation (EC) No 149/2008 of 29 January 2008 amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by establishing Annexes II, III and IV setting maximum residue levels for products covered by Annex I thereto. Official Journal of the European Union 59, 1-398.Google Scholar
Council Regulation EC No 1099 2009. Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Official Journal of the European Union 303, 1-30.Google Scholar
Daszkiewicz, T, Hnatyk, N, Dabrowski, D, Janiszewski, P, Gugołek, A, Kubiak, D, Smiecinska, K, Winarski, R and Koba-Kowalczyk, M 2015. A comparison of the quality of the Longissimus lumborum muscle from wild and farm-raised fallow deer (Dama L.). Small Ruminant Research 129, 7783.Google Scholar
Domínguez, R, Crecente, S, Borrajo, P, Agregán, R and Lorenzo, JM 2015a. Effect of slaughter age on foal carcass traits and meat quality. Animal 9, 17131720.Google Scholar
Domínguez, R, Borrajo, P and Lorenzo, JM 2015b. The effect of cooking methods on nutritional value of foal meat. Journal of Food Composition and Analysis 43, 6167.Google Scholar
Engle, TE and Spears, JW 2000. Dietary copper effects on lipid metabolism. Performance and ruminal fermentation in finishing steers. Journal of Animal Science 78, 23522458.Google Scholar
Engle, TE, Spears, JW, Armstrong, TA, Wright, CL and Odle, J 2000a. Effects of dietary copper source and concentration on carcass characteristics and lipid and cholesterol metabolism in growing and finishing steers. Journal of Animal Science 78, 10531059.Google Scholar
Engle, TE, Spears, JW, Fellner, V and Odle, J 2000b. Effects of soybean oil and dietary copper on ruminal and tissue lipid metabolism in finishing steers. Journal of Animal Science 78, 27132721.Google Scholar
Estévez, M, Morcuende, D, Ramírez, R, Ventanas, J and Cava, R 2004. Extensively reared Iberian pigs versus intensively reared white pigs for the manufacture of liver pâté. Meat Science 67, 453461.Google Scholar
Fisher, AV, Bayntun, JA, Enser, M and Elliot, J 1998. Carcass and meat quality characteristics: venison in a competitive market: attribute to world deer farming. In Proceedings of the 2nd World Deer Farming Congress, 24–28 June 1998, Limerick, Ireland, pp. 211–218.Google Scholar
Gambín, P, Serrano, MP, Gallego, L, García, A, Capelli, J, Ceacero, F and Landete Castillejos, T 2017. Does Cu supplementation affect the mechanical and structural properties and mineral content of antler bone tissue on red deer? Animal 11, 13121320.Google Scholar
Huang, Y, Wang, Y, Lin, X and Guo, C 2014. Effects of supplemental copper on the serum lipid profile, meat quality, and carcass composition of goat kids. Biological Trace Element Research 159, 140146.Google Scholar
Jarzyńska, G and Falandysz, J 2011. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus) – consequences to human health. Environment International 37, 882888.Google Scholar
Johnson, LR and Engle, TE 2003. The effects of copper source and concentration on lipid metabolism in growing and finishing Angus steers. Asian-Australasian Journal of Animal Sciences 16, 11311136.Google Scholar
Konjufca, VH, Pesti, GM and Bakalli, RI 1997. Modulation of cholesterol levels in broiler meat by garlic and copper. Poultry Science 76, 12641271.Google Scholar
Lorenzo, JM, Bermúdez, R, Domínguez, R, Guiotto, A, Franco, D and Purriños, L 2015. Physicochemical and microbial changes during the manufacturing process of dry-cured lacón salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Food Control 50, 763769.Google Scholar
National Research Council 2007. Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. National Academy Press, Washington, DC, USA.Google Scholar
Pateiro, M, Lorenzo, JM, Díaz, S, Gende, JA, Fernández, M, González, J, García, L, Rial, FJ and Franco, D 2013. Meat quality of veal: discriminatory ability of weaning status. Spanish Journal of Agricultural Research 11, 10441056.Google Scholar
Polak, T, Rajar, A, Gašperlin, L and Zlender, B 2008. Cholesterol concentration and fatty acid profile of red deer (Cervus elaphus) meat. Meat Science 80, 864869.Google Scholar
Razmaitė, V, Šiukščius, A, Šveistienė, R, Bliznikas, S and Švirmickas, GJ 2017. Comparative evaluation of longissimus and semimembranosus muscle characteristics from free-living and farmed red deer (Cervus elaphus) in Lithuania. Zoology and Ecology 27, 176183.Google Scholar
Santos-Silva, J, Bessa, RJB and Santos-Silva, F 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livestock Production Science 77, 187194.Google Scholar
Saran Netto, A, Zanetti, MA, Del Claro, GR, Garcia Vilela, F, Pires de Melo, M, Correa, LB and Piccoli Pugine, SM 2013. Copper and selenium supplementation in the diet of Brangus steers on the nutritional characteristics of meat. Revista Brasileira de Zootecnia 42, 7075.Google Scholar
Schlichting, D, Sommerfeld, C, Müller-Graf, C, Selhorst, T, Greiner, M, Gerofke, A, Ulbig, E, Gremse, C, Spolders, M, Schafft, H and Lahrssen-Wiederholt, M 2017. Copper and zinc content in wild game shot with lead or non-lead ammunition - implications for consumer health protection. PLoS ONE 12, e0184946.Google Scholar
Smith, RF and Dobson, H 1990. Effect of preslaughter experience on behaviour, plasma Cortisol and muscle pH in farmed red deer. Veterinary Record 126, 155158.Google Scholar
Solaiman, SG, Shoemaker, CE, Jones, WR and Kerth, CR 2006. The effects of high concentrations of supplemental copper on the serum lipid profile, carcass traits, and carcass composition of goat kids. Journal of Animal Science 84, 171177.Google Scholar
Ulbricht, TLV and Southgate, DAT 1991. Coronary heart disease: seven dietary factors. Lancet 338, 985992.Google Scholar
Volpelli, LA, Valusso, R, Morgante, M, Pittia, P and Piasentier, E 2003. Meat quality in male fallow deer (Dama dama): effects of age and supplementary feeding. Meat Science 65, 555562.Google Scholar
Wilson, PR and Grace, ND 2001. A review of tissue reference values used to assess the trace element status of farmed red deer (Cervus elaphus). New Zealand Veterinary Journal 49, 126132.Google Scholar
Supplementary material: File

Serrano et al. supplementary material

Serrano et al. supplementary material 1

Download Serrano et al. supplementary material(File)
File 32.7 KB