Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T08:21:34.812Z Has data issue: false hasContentIssue false

Role of self-sufficiency, productivity and diversification on the economic sustainability of farming systems with autochthonous sheep breeds in less favoured areas in Southern Europe

Published online by Cambridge University Press:  04 April 2013

R. Ripoll-Bosch*
Affiliation:
Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA). Av. Montañana 930, 50059 Zaragoza, Spain
M. Joy
Affiliation:
Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA). Av. Montañana 930, 50059 Zaragoza, Spain
A. Bernués
Affiliation:
Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA). Av. Montañana 930, 50059 Zaragoza, Spain Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (UMB), PO Box 5003, No-1432 Ås, Norway
*
Get access

Abstract

Traditional mixed livestock cereal- and pasture-based sheep farming systems in Europe are threatened by intensification and specialisation processes. However, the intensification process does not always yield improved economic results or efficiency. This study involved a group of farmers that raised an autochthonous sheep breed (Ojinegra de Teruel) in an unfavourable area of North-East Spain. This study aimed to typify the farms and elucidate the existing links between economic performance and certain sustainability indicators (i.e. productivity, self-sufficiency and diversification). Information was obtained through direct interviews with 30 farms (73% of the farmers belonging to the breeders association). Interviews were conducted in 2009 and involved 32 indicators regarding farm structure, management and economic performance. With a principal component analysis, three factors were obtained explaining 77.9% of the original variance. This factors were named as inputs/self-sufficiency, which included the use of on-farm feeds, the amount of variable costs per ewe and economic performance; productivity, which included lamb productivity and economic autonomy; and productive orientation, which included the degree of specialisation in production. A cluster analysis identified the following four groups of farms: high-input intensive system; low-input self-sufficient system; specialised livestock system; and diversified crops-livestock system. In conclusion, despite the large variability between and within groups, the following factors that explain the economic profitability of farms were identified: (i) high feed self-sufficiency and low variable costs enhance the economic performance (per labour unit) of the farms; (ii) animal productivity reduces subsidy dependence, but does not necessarily imply better economic performance; and (iii) diversity of production enhances farm flexibility, but is not related to economic performance.

Type
Research Article
Copyright
Copyright © The Animal Consortium 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrufat, A 1982. Crecimientos medios de los corderos de raza Ojinegra. VII Jornadas de la Sociedad Española de Ovinotecnia y Caprinotecnia (ed. E Ocio), pp. 441–446. SEOC, Murcia, Spain.Google Scholar
Barrantes, O, Ferrer, C, Reiné, R, Broca, A 2009. Categorization of grazing systems to aid the development of land use policy in Aragon, Spain. Grass and Forage Science 64, 2641.CrossRefGoogle Scholar
Benoit, M, Laignel, G 2010. Energy consumption in mixed crop-sheep farming systems: what factors of variation and how to decrease? Animal 4, 15971605.Google Scholar
Benoit, M, Tournadre, H, Dulphy, JP, Laignel, G, Prache, S, Cabaret, J 2009. Is intensification of reproduction rhythm sustainable in an organic sheep production system? A 4-year interdisciplinary study. Animal 3, 753763.CrossRefGoogle Scholar
Beriain, MJ, Horcada, A, Purroy, A, Lizaso, G, Chasco, J, Mendizabal, JA 2000. Characteristics of Lacha and Rasa Aragonesa lambs slaughtered at three live weights. Journal of Animal Science 78, 30703077.CrossRefGoogle ScholarPubMed
Bernués, A, Herrero, M 2008. Farm intensification and drivers of technology adoption in mixed dairy-crop systems in Santa Cruz, Bolivia. Spanish Journal of Agricultural Research 6, 279293.CrossRefGoogle Scholar
Bernués, A, Riedel, JL, Asensio, MA, Blanco, M, Sanz, A, Revilla, R, Casasús, I 2005. An integrated approach to studying the role of grazing livestock systems in the conservation of rangelands in a protected natural park (Sierra de Guara, Spain). Livestock Production Science 96, 7585.CrossRefGoogle Scholar
Bernués, A, Ruiz, R, Olaizola, A, Villalba, D, Casasús, I 2011. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: synergies and trade-offs. Livestock Science 139, 4457.CrossRefGoogle Scholar
Canali, G 2006. Common agricultural policy reform and its effects on sheep and goat market and rare breeds conservation. Small Ruminant Research 62, 207213.CrossRefGoogle Scholar
Darnhofer, I, Bellon, S, Dedieu, B, Milestad, R 2010a. Adaptiveness to enhance the sustainability of farming systems: a review. Agronomy for Sustainable Development 30, 545555.CrossRefGoogle Scholar
Darnhofer, I, Fairweather, J, Moller, H 2010b. Assessing a farm's sustainability: insights from resilience thinking. International Journal of Agricultural Sustainability 8, 186198.CrossRefGoogle Scholar
De Rancourt, M, Fois, N, Lavín, MP, Tchakérian, E, Vallerand, F 2006. Mediterranean sheep and goats production: an uncertain future. Small Ruminant Research 62, 167179.CrossRefGoogle Scholar
Deffontaines, JP, Petit, M 1985. Comment étudier les exploitations agricoles d'une région? Présentation d'un ensemble méthodologique. Collections Etudes et recherches no. 4, INRA-SAD, Versailles, France.Google Scholar
Deike, S, Pallutt, B, Christen, O 2008. Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. European Journal of Agronomy 28, 461470.Google Scholar
Dubeuf, J 2011. The social and environmental challenges faced by goat and small livestock local activities: present contribution of research-development and stakes for the future. Small Ruminant Research 98, 38.CrossRefGoogle Scholar
European Environmental Agency (EEA) 2004. High nature value farmland. Characteristics, trends and policy challenges. EEA report no 1/2004. European Environmental Agency, Copenhagen, Denmark.Google Scholar
Flamant, JC, Béranger, C, Gibon, A 1999. Animal production and land use sustainability: an approach from the farm diversity at territory level. Livestock Production Science 61, 275286.CrossRefGoogle Scholar
Gandini, G, Oldenbroek, K 2007. Strategies for moving from conservation to utilization. In Utilisation and conservation of farm animal genetic resources (ed. K Oldenbroek), pp. 2954. Wageningen Academic Publishers, Wageningen, The Netherlands.Google Scholar
García-Martínez, A, Olaizola, A, Bernués, A 2009. Trajectories of evolution and drivers of change in European mountain cattle farming systems. Animal 3, 152165.CrossRefGoogle ScholarPubMed
Hair, JF, Black, WC, Babin, BJ, Anderson, RE 2010. Multivariate data analysis: a global perspective. Pearson, New Jersey, USA.Google Scholar
Hoffmann, I 2010. Climate change and the characterization, breeding and conservation of animal genetic resources. Animal Genetics 41, 3246.CrossRefGoogle ScholarPubMed
Kopke, E, Young, J, Kingwell, R 2008. The relative profitability and environmental impacts of different sheep systems in a Mediterranean environment. Agricultural Systems 96, 8594.CrossRefGoogle Scholar
Manrique, E, Choquecallata, J, Revilla, R 1997. Evaluación de la eficiencia económica en diferentes sistemas de explotación ovina de montaña. XXII Jornadas Científicas y I Internacional de la Sociedad Española de Ovinotecnia y Caprinotecnia, pp. 479–489. Consejería de Agricultura, Pesca y Alimentación del Gobierno de Canarias, Tenerife, Spain.Google Scholar
Mottet, A, Ladet, S, Coqué, N, Gibon, A 2006. Agricultural land-use change and its drivers in mountain landscapes: a case study in the Pyrenees. Agriculture, Ecosystems and Environment 114, 296310.CrossRefGoogle Scholar
Oregui, LM, Falagán, A 2006. Spécificité et diversité des systèmes de production ovine et caprine dans les Bassin Méditerranéen [Specificity and diversity of the sheep and goat systems in the Mediterranean basin]. Options Méditerranéennes. Ser. A 70, 77–86.Google Scholar
Pardos, L, Maza, MT, Fantova, E, Sepúlveda, W 2008. The diversity of sheep production systems in Aragón (Spain): characterisation and typification of meat sheep farms. Spanish Journal of Agricultural Research 6, 497507.CrossRefGoogle Scholar
PDR 2009. Programa de Desarrollo Rural de Aragón [Rural Development Program of Aragon, Spain] 2007–2013. Comunidad Autónoma de Aragón. Gobierno de Aragón, Zaragoza, Spain.Google Scholar
Pérez, JP, Gil, JM, Sierra, I 2007. Technical efficiency of meat sheep production systems in Spain. Small Ruminant Research 69, 237241.Google Scholar
Riedel, JL, Casasús, I, Bernués, A 2007. Sheep farming intensification and utilization of natural resources in a Mediterranean pastoral agro-ecosystem. Livestock Science 111, 153163.CrossRefGoogle Scholar
Ripoll-Bosch, R, Álvarez-Rodríguez, J, Blasco, I, Picazo, R, Joy, M 2012a. Producción de leche y crecimiento de corderos en la raza Ojinegra de Teruel [Milk production and lamb growth in Ojinegra sheep breed]. ITEA-Información Técnica Económica Agraria 3, 298311.Google Scholar
Ripoll-Bosch, R, Díez-Unquera, B, Ruiz, R, Villalba, D, Molina, E, Joy, M, Olaizola, A, Bernués, A 2012b. An integrated sustainability assessment of mediterranean sheep farms with different degrees of intensification. Agricultural Systems 105, 4656.CrossRefGoogle Scholar
Ripoll-Bosch, R, Ripoll, G, Álvarez-Rodríguez, J, Blasco, I, Panea, B, Joy, M 2012c. Efecto del sexo y la explotación sobre la calidad de la canal y de la carne del cordero lechal de raza Ojinegra de Teruel [Effects of sex and farming system on carcass and meat quality of suckling lambs from Ojinegra breed]. ITEA-Información Técnica Económica Agraria 4, 522536.Google Scholar
Ripoll-Bosch, R, Villalba, D, Blasco, I, Congost, S, Falo, F, Revilla, R, Joy, M 2012d. Caracterización productiva de la raza Ojinegra de Teruel: Es la explotación un factor determinante? [Characterization of the Ojinegra sheep breed performance: is the farm a decisive factor?]. ITEA-Información Técnica Económica Agraria 3, 275288.Google Scholar
Ryschawy, J, Choisis, N, Choisis, JP, Gibon, A 2013. Paths to last in mixed crop-livestock farming: lessons from an assessment of farm trajectories of change. Animal 7, 673681.CrossRefGoogle ScholarPubMed
Ryschawy, J, Choisis, N, Choisis, JP, Joannon, A, Gibon, A 2012. Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal 6, 17221730.CrossRefGoogle ScholarPubMed
Sierra, I 2002. Razas aragonesas de Ganado. Gobierno de Aragón. Departamento de Agricultura, Zaragoza, Spain.Google Scholar
Stoate, C, Boatman, ND, Borralho, RJ, Carvalho, CR, De Snoo, GR, Eden, P 2001. Ecological impacts of arable intensification in Europe. Journal of Environmental Management 63, 337365.Google Scholar
Udo, HMJ, Aklilu, HA, Phong, LT, Bosma, RH, Budisatria, IGS, Patil, BR, Samdup, T, Bebe, BO 2011. Impact of intensification of different types of livestock production in smallholder crop-livestock systems. Livestock Science 139, 2229.CrossRefGoogle Scholar
van Keulen, H 2006. Heterogeneity and diversity in less-favoured areas. Agricultural Systems 88, 17.CrossRefGoogle Scholar
Wilkinson, JM 2011. Re-defining efficiency of feed use by livestock. Animal 5, 10141022.CrossRefGoogle ScholarPubMed