Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:08:44.290Z Has data issue: false hasContentIssue false

Coupling of seasonal variations in the zooplankton community within the limnetic and littoral zones of a shallow pond

Published online by Cambridge University Press:  04 July 2011

Michal Šorf*
Affiliation:
Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
Miloslav Devetter
Affiliation:
Institute of Soil Biology, Biology Centre, Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
*
*Corresponding author: michal.sorf@centrum.cz
Get access

Abstract

Seasonal dynamics of zooplankton were investigated in three different habitats of the shallow and temperate Kačležský pond (Czech Republic) during 2003–2004. The studied habitats included the limnetic zone and two littoral zones, each dominated by a different type of emergent macrophyte, reed grass (Glyceria maxima) and common reed (Phragmites australis). Species richness (calculated as number of taxa) was higher in both littoral zones than in the limnetic zone. The seasonal development of limnetic and littoral zooplankton communities differed. In contrast to the two littoral zones, close correlation with chlorophyll-a concentration was found for rotifers and cladocerans in the limnetic zone. Moreover, cladocerans inhabiting littoral areas (mainly Bosmina longirostris) reached annual maxima during spring when chlorophyll-a concentrations were low.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaver, J.R. and Havens, K.E., 1996. Seasonal and spatial variation in zooplankton community structure and their relation to possible controlling variables in Lake Okeechobee. Freshwater Biol., 36, 4556.CrossRefGoogle Scholar
Beklioğlu, M., 1999. A review on the control of eutrophication in deep and shallow lakes. Turk. J. Zool., 23, 327336.Google Scholar
Bērziņš, B. and Pejler, B., 1989. Rotifer occurrence and trophic degree. Hydrobiologia, 182, 171180.CrossRefGoogle Scholar
Burks, R.L., Jeppesen, E. and Lodge, D., 2001. Littoral zone structures as refugia against fish predators. Limnol. Oceanogr., 46, 230237.CrossRefGoogle Scholar
Burks, R.L., Lodge, D.M., Jeppesen, E. and Lauridsen, T.L., 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol., 47, 343365.CrossRefGoogle Scholar
Castro, B.B., Antunes, S.C., Pereira, R., Soares, A.M.V.M. and Gonçalves, F., 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia, 543, 221232.CrossRefGoogle Scholar
Cerbin, S., Balayla, D.J. and Van de Bund, W.J., 2003. Small-scale distribution and diel vertical migration of zooplankton in a shallow lake (Lake Naardermeer, the Netherlands). Hydrobiologia, 491, 111117.CrossRefGoogle Scholar
Cryer, M. and Townsend, C.R., 1988. Spatial distribution of zooplankton in a shallow eutrophic lake, with a discussion of its relation to fish predation. J. Plankton Res., 10, 487501.CrossRefGoogle Scholar
de Eyto, E., Irvine, K., Garcia-Criado, F., Gyllstrom, M., Jeppesen, E., Kornijow, R., Miracle, M.R., Nykanen, M., Bareiss, C., Cerbin, S., Salujoe, J., Franken, R., Stephens, D. and Moss, B., 2003. The distribution of chydorids (Branchiopoda, Anomopoda) in European shallow lakes and its application to ecological quality monitoring. Arch. Hydrobiol., 156, 181202.CrossRefGoogle Scholar
Edmonson, W.T., 1971. Counting zooplankton samples. In: Edmonson, W.T. and Winberg, G.G. (eds.), A manual on methods for the assessment of secondary productivity in fresh waters, IBP Handbook 17, Blackwell Scientific Publications, Oxford and Edinburgh, 127137.Google Scholar
Ejsmont-Karabin, J., 1995. Rotifer occurence in relation to age, depth and trophic state of quarry lakes. Hydrobiologia, 313/314, 2128.CrossRefGoogle Scholar
García, C.E., Nandini, S. and Sarma, S.S.S., 2003. Food type effects on the population growth patterns of littoral rotifers and cladocerans. Acta Hydroch. Hydrob., 31, 120133.CrossRefGoogle Scholar
Gliwicz, Z.M. and Rybak, J.I., 1976. Zooplankton. In: Pieczyńska, E. (ed.), Selected problems of lake littoral ecology, University of Warsaw, Warsaw, 6996.Google Scholar
Horppila, J. and Nurminen, L., 2001. The effect of an emergent macrophyte (Typha angustifolia) on sediment resuspension in a shallow north temperate lake. Freshwater Biol., 46, 14471455.CrossRefGoogle Scholar
Hrbáček, J., 1962. Species composition and the amount of the zooplankton in relation to the fish stock. Rozpravy Československé akademie věd. Matem. Přírod. Věd., 72, 1116.Google Scholar
Jeppesen, E., Jensen, J.P., Søndergaard, M., Lauridsen, T., Pedersen, L.J. and Jensen, L., 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342/343, 151164.CrossRefGoogle Scholar
Jeppesen, E., Sondergaard, M., Christoffersen, K., Theil-Nielsen, J. and Jurgens, K., 2002. Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Arch. Hydrobiol., 153, 533555.CrossRefGoogle Scholar
Joniak, T., Kuczyńska-Kippen, N. and Nagengast, B., 2007. The role of aquatic macrophytes in microhabitatual transformation of physical-chemical features of small water bodies. Hydrobiologia, 584, 101109.CrossRefGoogle Scholar
Lacroix, G. and Lescher-Moutoué, F., 1995. Spatial patterns of planktonic microcrustaceans in a small shallow lake. Hydrobiologia, 300/301, 205217.CrossRefGoogle Scholar
Lauridsen, T.L., Pedersen, L.J., Jeppesen, E. and Sondergaard, M., 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res., 18, 22832294.CrossRefGoogle Scholar
Lepš, J. and Šmilauer, P., 2003. Multivariate analysis of ecological data using CANOCO, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Lorenzen, C.J., 1967. Determination of chlorophyll and pheopigments: Spectrophotometric equations. Limnol. Oceanogr., 12, 343346.CrossRefGoogle Scholar
Moss, B., 2007. The art and science of lake restoration. Hydrobiologia, 581, 1524.CrossRefGoogle Scholar
Nurminen, L. and Horppila, J., 2002. A diurnal study on the distribution of filter feeding zooplankton: effect of emergent macrophytes, pH and lake trophy. Aquat. Sci., 64, 198206.CrossRefGoogle Scholar
Okun, N., Lewin, W.C. and Mehner, T., 2005. Top-down and bottom-up impacts of juvenile fish in a littoral reed stand. Freshwater Biol., 50, 798812.CrossRefGoogle Scholar
Padisák, J. and Reynolds, C.S., 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia, 506–509, 111.CrossRefGoogle Scholar
Pejler, B., 1995. Relation to habitat in rotifers. Hydrobiologia, 313/314, 267278.CrossRefGoogle Scholar
Perrow, M.R., Jowitt, A.J.D., Stansfield, J.H. and Phillips, G.L., 1999. The practical importance of the interaction between fish, zooplankton and macrophytes in shallow lake restoration. Hydrobiologia, 395/396, 199210.CrossRefGoogle Scholar
Post, D.M., Carpenter, S.R., Christensen, D.L., Cottingham, K.L., Kitchell, J.F., Schindler, D.E. and Hodgson, J.R., 1997. Seasonal effects of variable recruitment of a dominant piscivore on pelagic food web structure. Limnol. Oceanogr., 42, 722729.CrossRefGoogle Scholar
Radwan, S., Bielańska-Grajner, I., Papiołek, B. and Paleolog, A., 2003. Rotifer communities of ecotones in six trophically different lakes of Polesie Lubelskie region (Eastern Poland). Pol. J. Ecol., 51, 225236.Google Scholar
Rautio, M. and Vincent, W.F., 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biol., 51, 10381052.CrossRefGoogle Scholar
Romare, P., Berg, S., Lauridsen, T. and Jeppesen, E., 2003. Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshwater Biol., 48, 13531362.CrossRefGoogle Scholar
Rybak, J.I. and Węgleńska, T., 2003. Temporal and spatial changes in the horizontal distribution of planktonic Crustacea between vegetated littoral zone and the zone of open water. Pol. J. Ecol., 51, 205218.Google Scholar
Schöll, K., 2002. Seasonal changes in Rotifera assemblages of a shallow lake in the Fertö-Hanság National Park, Hungary. Opusc. Zool. Budapest, 34, 8594.Google Scholar
Smiley, E.A. and Tessier, A.J., 1998. Environmental gradients and the horizontal distribution of microcrustaceans in lakes. Freshwater Biol., 39, 397409.CrossRefGoogle Scholar
Sommer, U., Gliwicz, Z.M., Lampert, W. and Duncan, A., 1986. The PE-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol., 106, 433471.Google Scholar
Straškraba, M., 1967. Quantitative study on the littoral zooplankton of the Poltruba backwater with an attempt to disclose the effect on fish. Rozpr. Csl. Akad. Ved, 77, 734.Google Scholar
Van de Meutter, F., Stoks, R. and de Meester, L., 2005. Spatial avoidance of littoral and pelagic invertebrate predators by Daphnia. Behav. Ecol., 142, 489499.Google ScholarPubMed
Vijverberg, J., Gulati, R.D. and Mooij, W.M., 1993. Food-web studies in shallow eutrophic lakes by the Netherlands Institute of Ecology: main results, knowledge gaps and new perspectives. Neth. J. Aquat. Ecol., 27, 3549.CrossRefGoogle Scholar
Węgleńska, T., Ejsmont-Karabin, J. and Rybak, J.I., 1997. Biotic interaction of the zooplankton community of a shallow, humic lake. Hydrobiologia, 342/343, 185195.CrossRefGoogle Scholar
Supplementary material: PDF

OLM - limn 47-3 (2011) - 1100065 - Coupling of seasonal variations in the ...

Tables

Download OLM - limn 47-3 (2011) - 1100065 - Coupling of seasonal variations in the ...(PDF)
PDF 60.8 KB