Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T05:36:38.088Z Has data issue: false hasContentIssue false

Different life-history trade-offs of two Daphnia species (Cladocera, Crustacea) under natural conditions as the response to predation and competition

Published online by Cambridge University Press:  25 October 2010

Małgorzata Adamczuk*
Affiliation:
Department of Hydrobiology, University of Life Sciences, B. Dobrzańskiego 37, 20–262 Lublin, Poland
*
*Corresponding author: malgorzata.adamczuk@up.lublin.pl
Get access

Abstract

Daphnia longispina (O. F. Müller 1785) and Daphnia cucullata (G. O. Sars 1862), despite coexisting in similar densities in the lake, showed different demographic cycles. To search the causes of such variances between the two Daphnia, selected population parameters (density, body proportions, reproductive output) were correlated with the density of five dominant and potentially competitive species of Cladocera. The same parameters were estimated in relation to predation pressure of vertebrates (planktivorous fish) and invertebrates (Leptodora kindtii (Focke 1844)). The obtained results show that competition had no apparent impact on life-histories of Daphnia. Different strategies of the two Daphnia resulted from the uneven effect of invertebrate and vertebrate predators. D. longispina that was affected by planktivorous fish and Leptodora kindtii invested in reproduction and carried big egg-clutches. D. cucullata, which was insignificantly influenced by fish, displayed low reproductive output but changed their body proportions in the process of cyclomorphosis when occurring with L. kindtii. Other life-history trade-offs altered during the year, in accordance with the intensity of predation pressure.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczuk, M., 2009. Predation follows competition in depth selection behaviour of Cladocera in a deep lake. Biological lett. , 46, 3138.CrossRefGoogle Scholar
Boeing, W.J., Ramcharan, C.W. and Riessen, P., 2006. Multiple predator defence strategies in Daphnia pulex and their relation to native habitat. J. Plankton Res. , 28, 571584.CrossRefGoogle Scholar
Boersma, M., 1995. Competition in natural populations of Daphnia. Oecologia , 103, 309318.CrossRefGoogle ScholarPubMed
Brabrand, Å., Faaefing, B. and Nilssen, J.T., 1986. Juvenile roach and invertebrate predators: delaying the recovery phase of eutrophic lakes by suppression of efficient filter-feeders. J. Fish Biol. , 29, 99106.CrossRefGoogle Scholar
Brooks, J.L. and Dodson, S.I., 1965. Predation, body-size and composition of plankton. Science , 150, 2835.CrossRefGoogle ScholarPubMed
Czernaś, K. and Serafin, A., 2007. Changes in phytoplankton productivity in the pelagic zone of the mesotrophic Piaseczno lake in 1987–1989 and 2001–2003. Oceanol. Hydrobiol. Stud ., 36, suppl. 1, 209212.Google Scholar
DeMott, W.R. and Kerfoot, W.C., 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology , 63, 19491966.CrossRefGoogle Scholar
Dodson, S.I., 1972. Mortality in a population of Daphnia rosea . Ecology , 53, 10111023.CrossRefGoogle Scholar
Gabriel, W., 1982. Modelling reproductive strategies of Daphnia . Arch. Hydrobiol. , 95, 6980.Google Scholar
Gliwicz, Z.M. and Boavida, J.M., 1996. Clutch size and body size at first reproduction in Daphnia pulicaria at different levels of food and predation. J. Plankton Res. , 18, 863880.CrossRefGoogle Scholar
Gliwicz, Z.M. and Pijanowska, J., 1989. The role of predation in zooplankton succession. In: Sommer, U. (ed.), Plankton Ecology – Succession in Plankton Communities, Springer Verlag, New York-Berlin-Heidelberg, 253296.CrossRefGoogle Scholar
Goulden, C.E., Henry, L.L. and Tessier, A.J., 1982. Body size, energy reserves, and competitive ability in three species of Cladocera. Ecology , 63, 17801789.CrossRefGoogle Scholar
Hall, D.J., 1964. An experimental approach to the dynamics of a natural population of Daphnia Galeata Mendotae . Ecology , 45, 94112.CrossRefGoogle Scholar
Hall, D.J., Threlkeld, S.T., Burns, C.W. and Crowley, P.H., 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Ann. Rev. Ecol. Systemat. , 7, 177208.CrossRefGoogle Scholar
Hanazato, T. and Yasumo, M., 1989. Zooplankton community structure driven by vertebrate and invertebrate predators. Oecologia , 81, 450458.CrossRefGoogle ScholarPubMed
Hawkins, P. and Lampert, W., 1989. The effect of Daphnia body size on filtering rate inhibition in the presence of filamentous cyanobacterium. Limnol. Oceanogr. , 34, 10841089.CrossRefGoogle Scholar
Herzig, A., 1995. Leptodora kindtii: efficient predator and preferred prey item in a Neusiedler See, Austria. Hydrobiologia , 307, 273282.CrossRefGoogle Scholar
Herzig, A. and Auer, B. 1990. The feeding behaviour of Leptodora kindtii and its impact on the zooplankton community in Neusiedler See (Austria). Hydrobiologia , 198, 107117.
Hovenkamp, W., 1990. Instar-specific mortalities of coexisting Daphnia species in relation to food and invertebrate predation. J. Plankton Res. , 12, 483495.CrossRefGoogle Scholar
Jacobs, J., 1974. Quantitative measurement of food selection. Oecologia , 14, 413417.CrossRefGoogle Scholar
Karabin, A., 1974. Studies on the predatory role of the cladoceran, Leptodora kindtii (Focke), in secondary production of two lakes with different trophy. Ekol. pol. , 22, 295310.Google Scholar
Kerfoot, W.C., 1980. Commentary: transparency, body-size and prey conspicuousness. In: Kerfoot, W.C. (ed.), Evolution and Ecology of Zooplankton Communities, The University Press of New England, Hannover, 609617.Google Scholar
Kerfoot, W.C., DeMott, W.R. and De Angelis, D.L., 1985. Interactions among cladocerans: food limitation and exploitative competition. Arch. Hydrobiol. , 21, 431451.Google Scholar
Korovchinsky, N.M., 2000. Species richness of pelagic Cladocera of large lakes in the eastern hemisphere. Hydrobiologia , 434, 4154.CrossRefGoogle Scholar
Lane, P.A., 1979. Vertebrate and invertebrate predation intensity of freshwater zooplankton communities. Nature , 280, 391393.CrossRefGoogle Scholar
Lazzaro, X., 1987. A review of planktivorous fishes: Their evolution, feeding behaviors, selectivities and impacts. Hydrobiologia , 146, 97167.CrossRefGoogle Scholar
Lunte, C.C. and Luecke, C., 1990. Trophic interactions of Leptodora in lake Mendota. Limnol. Oceanogr. , 35, 10911100.CrossRefGoogle Scholar
Matveev, V.F., 1987. Effect of competition on the demography of planktonic cladocerans – Daphnia and Diaphanosoma . Oecologia , 74, 468477.CrossRefGoogle ScholarPubMed
Pastorok, R.A., 1980. Selection of prey by Chaoborus larvae: a review and new evidence o behavioral flexibility. In: Kerfoot, W.C. (ed.), Evolution and ecology of zooplankton communities, The University Press of New England, Hannover, 538554.Google Scholar
Patalas, K., 1954. Pelagic crustacean complexes of 28 Pommeranian lakes. Ekol. pol. , 2, 6192.Google Scholar
Pijanowska, J., 1990. Cyclomorphosis in Daphnia: an adaptation to avoid invertebrate predation. Hydrobiologia , 198, 4150.CrossRefGoogle Scholar
Riessen, H.P., 1984. The other side of cyclomorphosis: why Daphnia lose their helmets. Limnol. Oceanogr. , 29, 11231127.CrossRefGoogle Scholar
Smith, D.W. and Cooper, S.D., 1982. Competition among Cladocera. Ecology , 63, 10041015.CrossRefGoogle Scholar
Stearns, S.C., 1992. The evolution of life histories, Oxford University, 249 p.
Stibor, H. and Lampert, W., 1993. Estimating the size at maturity in field populations of Daphnia galeata (Cladocera). Freshwat. Biol. , 30, 433438.CrossRefGoogle Scholar
Šramek-Hušek, R., Straškraba, M. and Brtek, J., 1962. Lupenonozci – Branchiopoda , Fauna CSSR, 16, Praha, 470 p.Google Scholar
Vanni, M.J., 1986. Competition in zooplankton communities: suppression of small species by Daphnia pulex . Limnol. Oceanogr. , 31, 10391056.CrossRefGoogle Scholar
Wojtal, A., Frankiewicz, P. and Zalewski, M., 1999. The role of the invertebrate predator Leptodora kindtii in the trophic cascade of a lowland reservoir. Hydrobiologia , 416, 215223.CrossRefGoogle Scholar
Wojtal, A., Bogusz, D., Menshutkin, V., Izydorczyk, K., Frankiewicz, P., Wagner-Lotkowska, I. and Zalewski, M., 2008. A study of Daphnia-Leptodora-juvenile Percids interactions using a mathematical model in the biomanipulated Sulejow Reservoir. Ann. Limnol. - Int. J. Lim. , 44, 723.CrossRefGoogle Scholar
Wright, D.J., 1965. The population dynamics and production of Daphnia in Canyon Ferry Reservoir, Montana. Limnol. Oceanogr. , 10, 583590.CrossRefGoogle Scholar
Zaret, T.M. and Kerfoot, W.C., 1975. Fish predation on Bosmina longirostris: body size selection versus visibility selection. Ecology , 56, 232237.CrossRefGoogle Scholar