Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T21:34:27.589Z Has data issue: false hasContentIssue false

Trophic ontogenetic shifts of the dragonfly Rhionaeschna variegata: the role of larvae as predators and prey in Andean wetland communities

Published online by Cambridge University Press:  23 April 2014

Fabián Gastón Jara*
Affiliation:
Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOM-CONICET), Quintral 1250, San Carlos de Bariloche 8400, Río Negro, Argentina
*
*Corresponding author: fjara77@hotmail.com
Get access

Abstract

Body size strongly influences the type and strength of species interactions. Animals with complex life cycles, such as dragonflies, usually go through different stages that include a variation in body size and may involve shifts in their trophic position in the food web. This investigation analyzes the position of the dragonfly Rhionaeschna variegata, in the food web according to its body size, in Andean wetland communities of Northwestern Patagonia (Argentina). The phenology of R. variegata larvae and their potential intraguild predators were studied in wetlands with different hydroperiods. Under controlled experimental conditions, feeding trials were performed to assess the effect of R. variegata on the survivorship of different types of prey. The effects of cannibalism and intraguild predation (IGP) on the survivorship of the small larvae of R. variegata were investigated with and without alternative prey as well as different sympatric predators. The phenology of R. variegata and intraguild predators differed among wetlands. The feeding trials showed that R. variegata has a significant effect on the survivorship of invertebrate and vertebrate prey. Cannibalism increased with body size in odonate larvae. The survivorship of small- and medium-sized larvae was mainly affected by the presence of larger predators such as belosmatids. The field and experimental data show that the effect of IGP and cannibalism is affected by the cohort dynamics of R. variegata. Body size in R. variegata determines the strength of its interaction with other components of the community.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, R.A., 1989. Variation in predator phenology affects predator performance and prey community composition. Ecology, 70, 206219.CrossRefGoogle Scholar
Anholt, B.R., 1990. An experimental separation of interference and exploitative competition in a larval damselfly. Ecology, 71, 14831493.CrossRefGoogle Scholar
Arim, M. and Marquet, P.A., 2004. Intraguild predation: a widespread interaction related to species biology. Ecol. Lett., 7, 557564.CrossRefGoogle Scholar
Babbitt, K. and Jordan, F., 1996. Predation on Bufo terrestris tadpoles: effects of cover and predator identity. Copeia, 1996, 485488.CrossRefGoogle Scholar
Benke, A.C., 1978. Interactions among coexisting predators: a field experiment with dragonfly larvae. J. Anim. Ecol., 47, 335350.CrossRefGoogle Scholar
Benke, A.C. and Benke, S.S., 1975. Comparative dynamics and life histories of coexisting dragonfly populations. Ecology, 56, 302317.CrossRefGoogle Scholar
Bo, T., Fenoglio, S. and Malacarne, G., 2007. Diet of Dinocras cephalotes and Perla marginata (Plecoptera: Perlidae) in an Apenine stream (northwestern Italy). Can. Entomol., 139, 358364.CrossRefGoogle Scholar
Bo, T., Fenoglio, S., López-Rodríguez, M.J. and Tierno de Figueroa, J.M., 2011. Trophic behaviour of the dragonfly Cordulegaster boltoni (Insecta: Odonata) in small creeks in NW Italy. Entomol. Fennica, 22, 255261.Google Scholar
Burks, R.L., Jeppesen, E. and Lodge, D.M., 2001. Pelagic prey and benthic predators: impacts of odonate predation on Daphnia. J. N. Amer. Benthol. Soc., 20, 615628.CrossRefGoogle Scholar
Chowdhury, S.H., Corbet, P.S., 1988. Feeding rate of larvae of Enallagma cyathigerum (Charpentier) in the presence of conspecifics and predators (Zygoptera: Coenagrionidae). Odonatologica, 17, 115119.Google Scholar
Cohen, J.E., Pimm, S.L., Yodzis, P. and Saldana, J., 1993. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol., 62, 6778.CrossRefGoogle Scholar
Corbet, P.S., 1999. Dragonflies: Behavior and Ecology of Odonata, Cornell University Press, Ithaca, New York, 830 p.Google Scholar
Crowley, P.H., Dillon, P.M., Johnson, D.M. and Watson, C.N., 1987. Intraspecific interference among larvae in a semivoltine dragonfly population. Oecologia, 71, 447456.CrossRefGoogle Scholar
Crumrine, P., 2010. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol., 44, 761770.CrossRefGoogle Scholar
Fincke, O.P., Ynoviak, S.P. and Hanschu, R.D., 1997. Predation by odonates depresses mosquito abundance in water-filled tree holes in Panama. Oecologia, 112, 244253.CrossRefGoogle ScholarPubMed
García, R.D., 2010. Ciclo de vida del copépodo depredador Parabroteas sarsi (Calanoida, Centropagidae): Impacto del canibalismo en la población de la Laguna Fantasma. Licenciatura thesis, Universidad Nacional del Comahue, San Carlos de Bariloche.Google Scholar
Hasse, M.P., 1978. The Dynamics of Arthropod Predation, Princeton University Press, Princeton, 248 p.Google Scholar
Heads, P.A., 1985. The effect of invertebrate and vertebrate predators on the foraging movements of Ischnura elegans larvae (Odonata: Zygoptera). Freshw. Biol., 15, 559571.CrossRefGoogle Scholar
Heads, P.A., 1986. The costs of reduced feeding due to predator avoidance: potential effects on growth and fitness in Ischnura elegans larvae (Odonata, Zygoptera). Ecol. Entomol., 11, 369373.CrossRefGoogle Scholar
Henrikson, B.I., 1990. Predation on amphibian eggs and tadpoles by common predators in acidified lakes. Holarct. Ecol., 13, 201206.Google Scholar
Heyer, W.R., McDiarmid, R.W. and Weigmann, D.L., 1975. Tadpoles, predation and pond habitats in the tropics. Biotropica, 7, 100111.CrossRefGoogle Scholar
Holt, R.D. and Huxel, G.R., 2007. Alternative prey and the dynamics of intraguild predation: theoretical perspectives. Ecology, 88, 27062712.CrossRefGoogle ScholarPubMed
Ilmonen, J. and Suhonen, J., 2006. Intraguild predation, cannibalism, and microhabitat use in Calopteryx virgo and Somatochlora metallica larvae: a laboratory experiment. Aquat. Ecol., 40, 5968.CrossRefGoogle Scholar
Jara, F.G., 2008. Tadpole-odonate larvae interactions: influence of body size and diel rhythm. Aquat. Ecol., 42, 503509.CrossRefGoogle Scholar
Jara, F.G. and Perotti, M.G., 2006. Variacion ontogenetica en la palatabilidad de los renacuajos de Bufo spinulosus papillosus Philippi, 1902 (Anura, Bufonidae). Cuad. Herpetol., 19, 3742.Google Scholar
Jara, F.G. and Perotti, M.G., 2009. Toad tadpole responses to predator risk: ontogenetic change between constitutive and inducible defenses. J. Herpetol., 43, 8288.CrossRefGoogle Scholar
Jara, F.G. and Perotti, M.G., 2010. Risk of predation and behavioral response in three anuran species: influence of tadpole size and predator type. Hydrobiologia, 644, 313324.CrossRefGoogle Scholar
Jara, F.G., Perotti, M.G. and Diéguez, M.C., 2012. Distribution of backswimmers in shallow ponds of Patagonia and their predatory role on a common tadpole–copepod assemblage. N.Z. J. Mar. Freshw. Res., 46, 459473.CrossRefGoogle Scholar
Jara, F.G., Úbeda, C.A. and Perotti, M.G., 2013. Predatory insects in lentic freshwater habitats from northwest Patagonia: richness and phenology. J. Nat. Hist., 47, 27492768.CrossRefGoogle Scholar
Johansson, A., 1991a. Caddis larvae cases (Trichoptera, Limnephilidae) as anti-predatory devices against brown trout and sculpin. Hydrobiologia, 211, 185194.CrossRefGoogle Scholar
Johansson, F., 1991b. Foraging modes in an assemblage of odonate larvae-effects of prey and interference. Hydrobiologia, 209, 7987.CrossRefGoogle Scholar
Johansson, F., 1993. Effects of prey type, prey density and predator presence on behaviour and predation risk in a larval damselfly. Oikos, 68, 481489.CrossRefGoogle Scholar
Johansson, F. and Crowley, P.H., 2008. Larval cannibalism and population dynamics of dragonflies. In: Lancaster, J. and Briers, R.A. (eds.), Aquatic Insects: Challenges to Populations, CABI, Wallingford, 3654.CrossRefGoogle Scholar
Johnson, D.M., Martin, T.H., Mahato, M., Crowder, L.B. and Crowley, P.H., 1995. Predation, density dependence, and life histories of dragonflies: a field experiment in a freshwater community. J. N. Am. Benthol. Soc., 14, 547562.CrossRefGoogle Scholar
Klecka, J., Boukal, D.S. and Rasmussen, J., 2013. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study. J. Anim. Ecol., 82, 10311041.CrossRefGoogle ScholarPubMed
McCoy, M.W., Bolker, B.M., Warkentin, K.M. and Vonesh, J.R., 2011. Predicting predation through prey ontogeny using size-dependent functional response models. Amer. Nat., 177, 752766.CrossRefGoogle ScholarPubMed
McPeek, M.A., 1990a. Determination of species composition in the Enallagma damselfly assemblages of permanent lakes. Ecology, 71, 8398.CrossRefGoogle Scholar
McPeek, M.A., 1990b. Behavioral differences between Enallagma species (Odonata) influencing differential vulnerability to predators. Ecology, 71, 17141726.CrossRefGoogle Scholar
Memmott, J., Martinez, N.D. and Cohen, J.E., 2000. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J. Anim. Ecol., 69, 115.CrossRefGoogle Scholar
Merrill, R.J. and Johnson, D.M., 1984. Dietary niche overlap and mutual predation among coexisting larval anisoptera. Odonatologica, 13, 387406.Google Scholar
Muzón, J., 1995. Los Odonata de la Patagonia Argentina. Rev. Soc. Entomol. Argent., 54, 114.Google Scholar
Muzón, J., 1997. Odonata from Patagonia: species richness and distributional patterns. Biogeographica, 73, 123133.Google Scholar
Muzón, J., 2009. Current knowledge of Patagonian Odonata. Rev. Soc. Entomol. Argent., 68, 163167.Google Scholar
Muzón, J. and Von Ellenrieder, N., 1999. Status and distribution of Odonata (Insecta) within natural protected areas in Argentina. Biogeographica, 75, 119128.Google Scholar
Perotti, M.G., Diéguez, M.C. and Jara, F.G., 2005. Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Rev. Chil. Hist. Nat., 78, 723737.CrossRefGoogle Scholar
Perren, G., 2008. El banco de resistencia de cladóceros de lagunas temporarias del norte patagónico: estructura y patrones de abundancia y distribución. Licenciatura thesis, Universidad Nacional del Comahue, San Carlos de Bariloche.Google Scholar
Pimm, S.L., 1978. On feeding on more than one trophic level. Nature, 275, 542544.CrossRefGoogle Scholar
Polis, G.A., Meyers, C.A. and Holt, R.D., 1989. The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst., 20, 297330.CrossRefGoogle Scholar
Simberloff, D. and Dayan, T., 1991. The guild concept and the structure of ecological communities. Annu. Rev. Ecol. Syst., 22, 115143.CrossRefGoogle Scholar
Stav, G.L., Blaustein, A. and Margalith, J., 1999. Experimental evidence for predation risk sensitive oviposition by a mosquito, Culiseta longiareolata. Ecol. Entomol., 24, 202207.CrossRefGoogle Scholar
Suutari, E., Rantala, M.J., Salmela, J. and Suhonen, J., 2004. Intraguild predation and interference competition in the endangered dragonfly Aeshna viridis. Oecologia, 140, 135139.CrossRefGoogle ScholarPubMed
Urban, M.C., 2007. Predator size and phenology shape prey survival in temporary ponds. Oecologia, 154, 571580.CrossRefGoogle ScholarPubMed
van Buskirk, J., 1988. Interactive effects of dragonfly predation in experimental pond communities. Ecology, 69, 857867.CrossRefGoogle Scholar
van Buskirk, J., 1989. Density-dependent cannibalism in larval dragonflies. Ecology, 70, 14421449.CrossRefGoogle Scholar
van Buskirk, J., 1992. Competition, cannibalism, and size class dominance in a dragonfly. Oikos, 65, 455464.CrossRefGoogle Scholar
van Buskirk, J., 1993. Population consequences of larval crowding in the dragonfly Aeshna juncea. Ecology, 74, 19501958.CrossRefGoogle Scholar
von Ellenrieder, N., 2001. Species composition and distribution patterns of the Argentine Aeshnidae (Odonata: Anisoptera). Rev. Soc. Entomol. Argent., 60, 3960.Google Scholar
Vonesh, J.R., 2003. Density- and trait-mediated effects of predators across life history stages. PhD thesis, University of Florida, Gainesville, FL.Google Scholar
Warren, P.H. and Lawton, J.H., 1987. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia, 74, 231235.CrossRefGoogle ScholarPubMed
Westfall, M.J. and May, M.L., 1996. Damselflies of North America, Scientific Publishers, Gainesville, Florida, 649 p.Google Scholar
Wilbur, H.M., 1984. Complex life cycles and community organization in amphibians. In: Price, P.W., Slobodchikoff, C.W. and Goud, W.S. (eds.), A New Ecology: Novel Approaches to Interactive Systems, John Wiley & Sons, New York, NY, 195224.Google Scholar
Wissinger, S.A., 1989. Seasonal variation in the intensity of competition and predation among dragonfly larvae. Ecology, 70, 10171027.CrossRefGoogle Scholar
Wissinger, S.A., 1992. Niche overlap and the potential for competition and intraguild predation between size-structured populations. Ecology, 73, 14311444.CrossRefGoogle Scholar
Wissinger, S.A. and McGrady, J., 1993. Intraguild predation and competition between larval dragonflies: direct and indirect effects on shared prey. Ecology, 74, 207218.CrossRefGoogle Scholar
Wissinger, S.A., Sparks, G.B., Rouse, G.L., Brown, W.S. and Steltzer, H., 1996. Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands. Ecology, 77, 24212430.CrossRefGoogle Scholar