Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:45:44.723Z Has data issue: false hasContentIssue false

Shallow seismic surveys and ice thickness estimates of the Mullins Valley debris-covered glacier, McMurdo Dry Valleys, Antarctica

Published online by Cambridge University Press:  16 August 2007

David E. Shean*
Affiliation:
Department of Geological Sciences, Brown University, Box 1846, Providence, RI 02912, USA
James W. Head III
Affiliation:
Department of Geological Sciences, Brown University, Box 1846, Providence, RI 02912, USA
David R. Marchant
Affiliation:
Department of Earth Sciences, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA

Abstract

Several debris-covered glaciers occupy tributaries of upper Beacon Valley, Antarctica. Understanding their flow dynamics and ice thickness is important for palaeoclimate studies and for understanding the origins of ancient ice elsewhere in the McMurdo Dry Valleys region. We present the results of several shallow seismic surveys in Mullins Valley, where the largest of these debris-covered glaciers is located. Our results suggest that beneath a thin sublimation till and near-surface horizon of dirty glacier ice, lies relatively pure glacier ice (P-wave velocity ~3700–3800 m s-1), with total thickness estimates of ~90–95 m towards the valley head, and ~40–65 m near the entrance to Beacon Valley, ~2.5 km downglacier. P-wave velocities decrease downvalley, suggesting that the material properties of the ice change with increasing distance from the ice-accumulation zone. These new data are used to calibrate an ice thickness profile for the active portion of the Mullins Valley debris-covered glacier (upper ~3.5 km) and to shed light on the origin and spatial distribution of enclosed debris.

Type
EARTH SCIENCES
Copyright
Copyright © Antarctic Science Ltd 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G.S., Pyke, K., Strasser, J.C., Evenson, E.B., Lawson, D.E. & Bigl, R.A. 2003. Near-surface seismic reflection profiling of the Matanuska Glacier, Alaska. Geophysics, 68, 147156.CrossRefGoogle Scholar
Burger, H.R. 1992. Exploration geophysics of the shallow subsurface. Englewood Cliffs, NJ: Prentice Hall, 489 pp.Google Scholar
Clark, D.H., Steig, E.J., Potter, N. Jr, Fitzpatrick, J., Updike, A.B. & Clark, G.M. 1996. Old ice in rock glaciers may provide long-term climate records. Eos, 77, 217, 221222.CrossRefGoogle Scholar
Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A., Nylen, T. & Lyons, W.B. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107, doi: 10.1029/2001JD002045.CrossRefGoogle Scholar
Goldsby, D.L. & Kohlstedt, D.L. 2001. Superplastic deformation of ice: experimental observations. Journal of Geophysical Research B, 106, doi: 10.1029/2000JB900336.CrossRefGoogle Scholar
Head, J.W., Hiesinger, H., Kreslavsky, M., Milkovich, S., Neukum, G., Werner, S., Van Gasse, S., Jaumann, R., Hauber, E., Hoffmann, H., Carr, M., Masson, P. & Foing, B. 2005. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346351.CrossRefGoogle ScholarPubMed
Head, J.W. & Marchant, D.R. 2003. Cold-based mountain glaciers on Mars: western Arsia Mons. Geology, 31, 641644.2.0.CO;2>CrossRefGoogle Scholar
Kaab, A. & Weber, M. 2004. Development of transverse ridges on rock glaciers: field measurements and laboratory experiments. Permafrost and Periglacial Processes, 15, 379391.CrossRefGoogle Scholar
Kohnen, H. 1974. The temperature dependence of seismic waves in ice. Journal of Glaciology, 13, 144147.CrossRefGoogle Scholar
Konrad, S.K., Humphrey, N.F., Steig, E.J., Clark, D.H., Potter, N. Jr & Pfeffer, W.T. 1999. Rock glacier dynamics and paleoclimatic implications. Geology, 27, 11311134.2.3.CO;2>CrossRefGoogle Scholar
Kowalewski, D., Marchant, D.R., Levy, J. & Head, J.W. 2006. Quantifying low summertime sublimation rates for buried glacier ice in Beacon Valley, Antarctica. Antarctic Science, 18, 421428.CrossRefGoogle Scholar
Lee, M.W., Hutchinson, D.R., Collett, T.S. & Dillon, W.P. 1996. Seismic velocities for hydrate-bearing sediments using weighted equation. Journal of Geophysical Research B, 101, doi: 10.1029/96JB01886.CrossRefGoogle Scholar
Levy, J.S., Head, J.W. & Marchant, D.R. 2006. Distribution and origin of patterned ground on Mullins Valley debris-covered glacier, Antarctica: the roles of ice flow and sublimation. Antarctic Science, 18, doi: 10.1017/S0954102006000435.CrossRefGoogle Scholar
Linkletter, G., Bockheim, J. & Ugolini, F.C. 1973. Soils and glacial deposits in the Beacon Valley, southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 16, 90108.CrossRefGoogle Scholar
Lorrey, A.M. 2005. Multiple remnant glaciers preserved in Beacon Valley, Antarctica. Glacial Geology and Geomorphology, rp02/2005, 128.Google Scholar
Marchant, D.R. & Denton, G.H. 1996. Miocene and Pliocene paleoclimate of the Dry Valleys region, southern Victoria Land: a geomorphological approach. Marine Micropaleontology, 27, 253271.CrossRefGoogle Scholar
Marchant, D.R., Lewis, A.R., Phillips, W.M., Moore, E.J., Souchez, R.A., Denton, G.H., Sugden, D.E., Potter, N. & Landis, G.P. 2002. Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geological Society of America Bulletin, 114, 718730.2.0.CO;2>CrossRefGoogle Scholar
Marchant, D.R. & Head, J.W. In press. Antarctic Dry Valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus.Google Scholar
Martin, H.E. & Whalley, W.B. 1987. Rock glaciers. Part 1: rock glacier morphology, classification and distribution. Progress in Physical Geography, 11, 260282.CrossRefGoogle Scholar
Milkovich, S.M., Head, J.W. & Marchant, D.R. 2006. Debris-covered piedmont glaciers along the north-west flank of the Olympus Mons scarp: evidence for low-latitude ice accumulation during the Late Amazonian of Mars. Icarus, 181, 388407.CrossRefGoogle Scholar
Moore, E.J. 2002. Age, origin, and paleoclimatic significance of buried ice in Upper Beacon Valley, Antarctica. MA thesis, Boston University, 166 pp. [Unpublished].Google Scholar
Ng, F., Hallet, B., Sletten, R.S. & Stone, J.O. 2005. Fast-growing till over ancient ice in Beacon Valley, Antarctica. Geology, 33, 121124.CrossRefGoogle Scholar
Potter, N. 1972. Ice-cored rock glacier, Galena Creek, northern Absaroka Mountains, Wyoming. Geological Society of America Bulletin, 83, 30253058.CrossRefGoogle Scholar
Potter, N. & Wilson, S.C. 1984. Glacial geology and soils in Beacon Valley. Antarctic Journal of the United States, 18(5), 100103.Google Scholar
Rignot, E., Hallet, B. & Fountain, A. 2002. Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophysical Research Letters, 29, doi: 10.1029/2001GL013494.CrossRefGoogle Scholar
Schaefer, J.M., Baur, H., Wieler, R., Denton, G.H., Ivy-Ochs, S., Schluchter, C. & Marchant, D.R. 2000. The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating. Earth and Planetary Science Letters, 179, 9199.CrossRefGoogle Scholar
Schenk, T., Csatho, B., Ahn, Y., Yoon, T., Shin, S.W. & Huh, K.I. 2004. DEM generation from the Antarctic LiDAR data: site report. Available from: http://usarc.usgs.gov/lidar/lidar_pdfs/Site_reports_v5.pdf, 49 pp.Google Scholar
Scwerdtfeger, W. 1984. Weather and climate of the Antarctic. Amsterdam: Elsevier, 327 pp.Google Scholar
Shean, D.E., Head, J.W. & Marchant, D.R. 2005. Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit. Journal of Geophysical Research, 110, doi: 10.1029/2004JE002360.CrossRefGoogle Scholar
Shean, D.E., Head, J.W., Marchant, D.R. & Fastook, J.L. 2007. Recent glaciation at Arsia Mons, Mars: implications for the formation and evolution of large tropical mountain glaciers. Journal of Geophysical Research, doi: 10.1029/2006JE002761.CrossRefGoogle Scholar
Steig, E.J., Fitzpatrick, J.J., Potter, N. Jr & Clark, D.H. 1998. The geochemical record in rock glaciers. Geografiska Annaler, A80, 277286.CrossRefGoogle Scholar
Stockwell, J.W. 1999. The CWP/SU: seismic Un*x package. Computers & Geosciences, 25, 415419.CrossRefGoogle Scholar
Sugden, D.E., Marchant, D.R., Potter, N. Jr, Souchez, R., Denton, G.H., Swisher, C.C. & Tison, J.L. 1995. Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412414.CrossRefGoogle Scholar
Vincent, P.D., Steeples, D.W., Tsoflias, G.P. & Sloan, S.D. 2005. Two approaches to noise tests. SEG Expanded Abstracts, 24, 11801183.Google Scholar
Wahrhaftig, C. & Cox, A. 1959. Rock glaciers in the Alaska Range. Geological Society of America Bulletin, 70, 383436.CrossRefGoogle Scholar