Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T14:39:50.787Z Has data issue: false hasContentIssue false

Antibiotic and metal resistance of cultivable bacteria in the Antarctic sea urchin

Published online by Cambridge University Press:  05 May 2016

M. González-Aravena*
Affiliation:
Laboratorio de Biorrecursos Antárticos, Instituto Antártico Chileno, Punta Arenas 6200000, Chile
R. Urtubia
Affiliation:
Laboratorio de Biorrecursos Antárticos, Instituto Antártico Chileno, Punta Arenas 6200000, Chile
K. Del Campo
Affiliation:
Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
P. Lavín
Affiliation:
Laboratorio de Biorrecursos Antárticos, Instituto Antártico Chileno, Punta Arenas 6200000, Chile
C.M.V.L. Wong
Affiliation:
Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
C.A. Cárdenas
Affiliation:
Laboratorio de Biorrecursos Antárticos, Instituto Antártico Chileno, Punta Arenas 6200000, Chile
G. González-Rocha
Affiliation:
Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile

Abstract

In this paper we report the first characterization of cultivable bacteria obtained from the Antarctic sea urchin Sterechinus neumayeri. The coelomic fluid was obtained from a pool of sea urchins which was plated onto different media to isolate the bacteria. A total of 42 isolates of psychrotrophic and aerobic γ-Proteobacteria (59.5%), Flavobacteria (33.3%) and Actinomycetes (7.2%) were isolated and sequenced. These bacteria were exposed to heavy metals and antibiotics, where 38 strains were analysed by the minimal inhibitory concentration method. Antibiotic resistance was detected in 44% of cultivable strains, and a further 13% presented co-resistance to antibiotics and heavy metals. The genera of bacteria that showed an increased resistance and co-resistance to metals and antibiotics were Flavobacterium, Psychrobacter and Pseudomonas. Additionally, 30.9% of isolated bacterial strains contained plasmids, which are probably related to resistance and co-resistance to metals. These results indicate that sea urchin-associated bacteria could be reservoirs for antibiotic resistance genes.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 3246.Google Scholar
Bargagli, R., Nelli, L., Ancora, S. & Focardi, S. 1996. Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biology, 16, 513520.CrossRefGoogle Scholar
Becker, P.T., Egea, E. & Eeckhaut, I. 2008. Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus . Journal of Invertebrate Pathology, 98, 136147.CrossRefGoogle ScholarPubMed
Bennett, P.M. 2008. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. British Journal of Pharmacology, 153, S347S357.CrossRefGoogle ScholarPubMed
Brey, T. & Gutt, J. 1991. The genus Sterechinus (Echinodermata: Echinoidea) on the Weddell Sea shelf and slope (Antarctica): distribution, abundance and biomass. Polar Biology, 11, 227232.CrossRefGoogle Scholar
Cheesman, S.E. & Guillemin, K. 2007. We know you are in there: conversing with the indigenous gut microbiota. Research in Microbiology, 158, 29.Google Scholar
Cowan, D.A., Chown, S.L., Convey, P., Tuffin, M., Hughes, K., Pointing, S. & Vincent, W.F. 2011. Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends in Microbiology, 19, 540548.Google Scholar
Davies, J. & Davies, D. 2010. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74, 417433.CrossRefGoogle ScholarPubMed
De Moreno, J.E.A., Gerpe, M.S., Moreno, V.J. & Vodopivez, C. 1997. Heavy metals in Antarctic organisms. Polar Biology, 17, 131140.Google Scholar
De Souza, M., Nair, S., Bharathi, P.A.L. & Chandramohan, D. 2006. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters. Ecotoxicology, 15, 379384.Google Scholar
Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 17921797.Google Scholar
Feller, G., Sonnet, P. & Gerday, C. 1995. The beta-lactamase secreted by the Antarctic psychrophile Psychrobacter immobilis A8. Applied and Environmental Microbiology, 61, 44744476.Google Scholar
Gilles, K.W. & Pearse, J.S. 1986. Disease in sea urchin Strongylocentrotus purpuratus: experimental infection and bacterial virulence. Diseases of Aquatic Organisms, 1, 105114.CrossRefGoogle Scholar
Guindon, S. & Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696704.Google Scholar
Hasegawa, M., Kishino, H. & Yano, T.A. 1985. Dating of the human ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Biology, 22, 160174.Google Scholar
Hernandez, J., Stedt, J., Bonnedahl, J., Molin, Y., Drobni, M., Calisto-Ulloa, N., Gomez-Fuentes, C., Astorga-España, M.S., González-Acuña, D., Waldenström, J., Blomqvist, M. & Olsena, B. 2012. Human-associated extended-spectrum beta-lactamase in the Antarctic. Applied and Environmental Microbiology, 78, 20562058.Google Scholar
Hughes, K.A., Convey, P., Maslen, N.R. & Smith, R.I.L. 2010. Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biological Invasions, 12, 875891.Google Scholar
Hughes, K.A. & Thompson, A. 2004. Distribution of sewage pollution around a Maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. Environmental Pollution, 127, 315321.Google Scholar
Kobori, H., Sullivan, C.W. & Shizuya, H. 1984. Bacterial plasmids in Antarctic natural microbial assemblage. Applied and Environmental Microbiology, 48, 515518.Google Scholar
Llewellyn, M.S., Boutin, S., Hoseinifar, S. & Derome, N. 2014. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5, 10.3389/fmicb.2014.00207.Google Scholar
Lo Giudice, A., Casella, P., Bruni, V. & Michaud, L. 2013. Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology, 22, 240250.Google Scholar
Mangano, S., Michaud, L., Caruso, C. & Lo Giudice, A. 2014. Metal and antibiotic resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biology, 37, 227235.CrossRefGoogle Scholar
Mangano, S., Michaud, L., Caruso, C., Brilli, M., Bruni, V., Fani, R. & Lo Giudice, A. 2009. Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Research in Microbiology, 160, 2737.Google Scholar
Martinez, J.L. 2008. Antibiotics and antibiotic resistance genes in natural environment. Science, 321, 365367.Google Scholar
Martins, C.C., Aguiar, S.N., Wisnieski, E., Ceschim, L.M.M., Figueira, R.C.L. & Montone, R.C. 2014. Baseline concentrations of faecal sterols and assessment of sewage input into different inlets of Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 78, 218223.Google Scholar
Maugeri, T.L., Gugliandolo, C. & Bruni, V. 1996. Heterotrophic bacteria in the Ross Sea (Terra Nova Bay, Antarctica). Microbiologica, 19, 6776.Google Scholar
Michaud, L., Di Cello, F., Brilli, M., Fani, R., Lo Giudice, A. & Bruni, V. 2004. Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea, Antarctica). FEMS Microbiology Letters, 230, 6371.CrossRefGoogle Scholar
Miller, R.V., Gammon, K. & Day, M.J. 2009. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Canadian Journal of Microbiology, 55, 3745.Google Scholar
Murray, A.E. & Grzymski, J.J. 2007. Diversity and genomics of Antarctic marine microorganisms. Philosophical Transactions of the Royal Society, B362, 22592271.Google Scholar
Negri, A., Burns, K., Boyle, S., Brinkman, D. & Webster, N. 2006. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution, 143, 456467.Google Scholar
Ramírez-Flandes, S. & Ulloa, O. 2008. Bosque: integrated phylogenetic analysis software. Bioinformatics, 24, 25392541.CrossRefGoogle ScholarPubMed
Sambrook, J. & Russell, D.W. 2001. Molecular cloning: a laboratory manual. New York, NY: Cold Spring Harbor, 999 pp.Google Scholar
Sjoling, S. & Cowan, D.A. 2000. Detecting human bacterial contamination in Antarctic soils. Polar Biology, 23, 644650.Google Scholar
Smith, J.J., Howington, J.P. & McFeters, G.A. 1993. Plasmid maintenance and expression in Escherichia coli exposed to the Antarctic marine environment. Antarctic Journal of the United States, 28(5), 123124.Google Scholar
Tam, H.K., Wong, C.M.V.L., Yong, S.T., Blamey, J. & Gonzalez, M. 2015. Multiple antibiotic-resistant bacteria from the maritime Antarctic. Polar Biology, 38, 10.1007/s00300-015-1671-6.Google Scholar
Tropeano, M., Coria, S., Turjanski, A., Cicero, D., Bercovich, A., Mac Cormack, W. & Vazquez, S. 2012. Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production. Polar Research, 31, 10.3402/polar.v31i0.18507.Google Scholar
Truzzi, C., Annibaldi, A., Illuminati, S., Bassotti, E. & Scarponi, G. 2008. Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica). Analytical and Bioanalytical Chemistry, 392, 247262.CrossRefGoogle Scholar
Unkles, S.E. 1977. Bacterial flora of the sea urchin Echinus esculentus . Applied and Environmental Microbiology, 34, 347350.CrossRefGoogle ScholarPubMed
Webster, N.S., Negri, A.P., Munro, M.M.H.G. & Battershill, C.N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environmental Microbiology, 6, 288300.Google Scholar
Supplementary material: PDF

González-Aravena supplementary material

Table S1 and Figure S1

Download González-Aravena supplementary material(PDF)
PDF 69.2 KB