Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T09:15:53.045Z Has data issue: false hasContentIssue false

Cytogenetic diversity in the Antarctic plunderfishes (Notothenioidei: Artedidraconidae)

Published online by Cambridge University Press:  02 December 2010

Laura Ghigliotti*
Affiliation:
Department of Biology, University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy
Thomas J. Near
Affiliation:
Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520-8105, USA
Sara Ferrando
Affiliation:
Department of Biology, University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy
Marino Vacchi
Affiliation:
ISPRA and National Antarctic Museum, University of Genova, Viale Benedetto XV 5, 16132 Genoa, Italy
Eva Pisano
Affiliation:
Department of Biology, University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy

Abstract

Antarctic plunderfishes (Notothenioidei, Artedidraconidae) are important components of the Southern Ocean fish fauna. As a contribution to the Victoria Land Transect Project, we performed a cytogenetic analysis of six species from three of the four artedidraconid genera, Artedidraco glareobarbatus, A. orianae, A. skottsbergi, A. shackletoni, Histiodraco velifer, and Pogonophryne sp. We investigated the species-specific cytogenetic features and highlighted patterns of chromosomal evolutionary change using a molecular phylogeny based on mitochondrial and nuclear genes. Despite a conserved diploid number, some important karyotypic traits account for major differences among artedidraconid species. Specific cytogenetic features, including the chromosomal organization of ribosomal genes and the occurrence of sex chromosomes, are characteristics of A. skottsbergi, making this species distinct among those studied. These chromosomal peculiarities are consistent with the phylogenetic hypothesis resolving A. skottsbergi as the sister lineage of all other Artedidraconidae. A karyological similarity was found between A. glareobarbatus and A. shackletoni consistent with their inferred sister species relationship in the phylogeny. The results indicate that artedidraconids are not conservative in their genomic organization at the chromosomal level and provide new evidence for the degree of biological diversity in this notothenioid group.

Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balushkin, A.V. 2000. Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). Journal of Ichthyology, 40, S74S109.Google Scholar
Bertollo, L.A.C., Takahashi, C.S. Moreira Filho, O. 1983. Multiple sex chromosomes in the genus Hoplias (Pisces, Erythrinidae). Cytologia, 48, 112.CrossRefGoogle Scholar
Caputo, V., Splendiani, A., Nisi Cerioni, P. Olmo, E. 2003. The chromosomal complement of the artedidraconid fish Histiodraco velifer (Perciformes: Notothenioidei) from Terra Nova Bay, Ross Sea. Cytogenetic and Genome Research, 102, 2932.CrossRefGoogle Scholar
Caputo, V., Nisi Cerioni, P., Splendiani, A., Capriglione, T., Odierna, G. Olmo, E. 2002. Chromosomal studies on ten species of notothenioid fishes (Notothenioidei: Bathydraconidae, Channichthyidae, Nototheniidae). Cytogenetic and Genome Research, 98, 285290.CrossRefGoogle ScholarPubMed
Dubcovsky, J. Dvorák, J. 1995. Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics, 140, 13671377.CrossRefGoogle ScholarPubMed
Eakin, R.R. 1990. Artedidraconidae. In Gon, O. & Heemstra, P.C., eds. Fishes of the Southern Ocean. Grahamstown: JLB Smith Institute of Ichthyology, 332356.Google Scholar
Eakin, R.R., Eastman, J.T. Jones, C.D. 2001. Mental barbel variation in Pogonophryne scotti Regan (Pisces: Perciformes: Artedidraconidae). Antarctic Science, 13, 363370.CrossRefGoogle Scholar
Eakin, R.R., Eastman, J.T. Matallanas, J. 2008. New species of Pogonophryne (Pisces, Artedidraconidae) from the Bellingshausen Sea, Antarctica. Polar Biology, 31, 11751179.CrossRefGoogle Scholar
Eakin, R.R., Eastman, J.T. Near, T.J. 2009. A new species and a molecular phylogenetic analysis of the Antarctic fish genus Pogonophryne (Notothenioidei: Artedidraconidae). Copeia, 4, 705713.CrossRefGoogle Scholar
Eakin, R.R., Eastman, J.T. Vacchi, M. 2006. Sexual dimorphism and mental barbel structure in the South Georgia plunderfish Artedidraco mirus (Perciformes: Notothenioidei: Artedidraconidae). Polar Biology, 30, 4552.CrossRefGoogle Scholar
Eastman, J.T. Eakin, R.R. 1999. Fishes of the genus Artedidraco (Pisces, Artedidraconidae) from the Ross Sea, Antarctica, with the description of a new species and a colour morph. Antarctic Science, 11, 1322.CrossRefGoogle Scholar
Eastman, J.T. Eakin, R.R. 2001. Mental barbel and meristic variation in the Antarctic notothenioid fish Dolloidraco longedorsalis (Perciformes: Artedidraconidae) from the Ross Sea. Polar Biology, 24, 729734.CrossRefGoogle Scholar
Eastman, J.T. Lannoo, M.J. 2003. Anatomy and histology of the brain and sense organs of the Antarctic plunderfish Dolloidraco longedorsalis (Perciformes: Notothenioidei: Artedidraconidae), with comments on the brain morphology of other artedidraconids and closely related harpagiferids. Journal of Morphology, 255, 358377.CrossRefGoogle ScholarPubMed
Ekau, W. Gutt, J. 1991. Notothenioid fishes from the Weddell Sea and their habitat, observed by underwater photography and television. Proceedings of the NIPR Symposium on Polar Biology, 4, 3649.Google Scholar
Galetti, P. 1998. Chromosome diversity in neotropical fishes: NOR studies. Italian Journal of Zoology, 65, S53S56.CrossRefGoogle Scholar
Galetti, P.M. Jr, Aguilar, C.T. Molina, W.F. 2000. An overview of marine fish cytogenetics. Hydrobiologia, 420, 5562.CrossRefGoogle Scholar
Ghigliotti, L., Mazzei, F., Ozouf-Costaz, C., Bonillo, C., Williams, R., Cheng, C. Pisano, E. 2007. The two giant sister species of the Southern Ocean, Dissostichus eleginoides and Dissostichus mawsoni, differ in karyotype and chromosomal pattern of ribosomal RNA genes. Polar Biology, 30, 625634.CrossRefGoogle Scholar
Hubold, G. 1992. Ecology of Weddell Sea fishes. Berichte zur Polarforschung, 103, 1157.Google Scholar
Janssen, J., Jones, W. Slattery, M. 1993. Feeding responses to mechanical stimulation of the barbel in Histiodraco velifer (Artedidraconidae). Copeia, 3, 885889.CrossRefGoogle Scholar
King, M. 1993. Species evolution: the role of chromosome change. Cambridge: Cambridge University Press, 358 pp.Google Scholar
La Mesa, M. Vacchi, M. 2005. On the second record of the Antarctic plunderfish Artedidraco glareobarbatus (Artedidraconidae) from the Ross Sea. Polar Biology, 29, 4043.CrossRefGoogle Scholar
La Mesa, M., Cattaneo-Vietti, R. Vacchi, M. 2006. Species composition and distribution of the Antarctic plunderfishes (Pisces, Artedidraconidae) from the Ross Sea off Victoria Land. Deep-Sea Research II, 53, 10611070.CrossRefGoogle Scholar
Levan, A., Fredga, K. Sandberg, A.A. 1964. Nomenclature for centromeric position on chromosome. Hereditas, 52, 201220.CrossRefGoogle Scholar
Lombarte, A., Olaso, I. Bozzano, A. 2003. Ecomorphological trends in the Artedidraconidae (Pisces: Perciformes: Notothenioidei) of the Weddell Sea. Antarctic Science, 15, 211218.CrossRefGoogle Scholar
MacDonald, J.A. Montgomery, J.C. 1991. The sensory biology of notothenioid fish. In di Prisco, G., Maresca, B. & Tota, B., eds. Biology of Antarctic fish. Berlin: Springer, 145162.CrossRefGoogle Scholar
Mazzei, F., Ghigliotti, L., Bonillo, C., Coutanceau, J.-P., Ozouf-Costaz, C. Pisano, E. 2004. Chromosomal patterns of major and 5S ribosomal DNA in six icefish species (Perciformes, Notothenioidei, Channichthyidae). Polar Biology, 28, 4755.Google Scholar
Mazzei, F., Ghigliotti, L., Coutanceau, J., Detrich, H., Prirodina, V., Ozouf-Costaz, C. Pisano, E. 2008. Chromosomal characteristics of the temperate notothenioid fish Eleginops maclovinus (Cuvier). Polar Biology, 31, 629634.CrossRefGoogle Scholar
Mazzei, F., Ghigliotti, L., Lecointre, G., Ozouf-Costaz, C., Coutanceau, J.-P., Detrich, H.W. III Pisano, E. 2006. Karyotypes of basal lineages in notothenioid fishes: the genus Bovichtus. Polar Biology, 29, 10711076.CrossRefGoogle Scholar
Mitelman, F., ed. 1995. ISCN: an international system for human cytogenetic nomenclature. Basel: Karger, 114 pp.Google Scholar
Molina, W.F. 2007. Chromosomal changes and stasis in marine fish groups. In Pisano, E., Ozouf-Costaz, C., Foresti, F. & Kapoor, B.G., eds. Fish cytogenetics. Enfield, NH: Science Publishers, 69110.CrossRefGoogle Scholar
Morescalchi, A., Morescalchi, M.A., Odierna, G., Stingo, V. Capriglione, T. 1996. Karyotype and genome size of Zoarcids and Notothenioids (Teleostei, Perciformes) from the Ross Sea: cytotaxonomic implications. Polar Biology, 16, 559564.CrossRefGoogle Scholar
Near, T.J. Cheng, C. 2008. Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution, 47, 832840.CrossRefGoogle ScholarPubMed
Near, T.J., Pesavento, J. Cheng, C.-H.C. 2004. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Molecular Phylogenetics and Evolution, 32, 881891.CrossRefGoogle ScholarPubMed
Olaso, I., Rauschert, M. De Broyer, C. 2000. Trophic ecology of the family Artedidraconidae (Pisces: Osteichthyes) and its impact on the eastern Weddell Sea benthic system. Marine Ecology Progress Series, 194, 143158.CrossRefGoogle Scholar
Ota, K., Kobayashi, T., Ueno, K. Gojobori, T. 2000. Evolution of eteromorphic sex chromosomes in the order Aulopiformes. Gene, 259, 2530.CrossRefGoogle ScholarPubMed
Ozouf-Costaz, C., Hureau, J.-C. Beaunier, M. 1991. Chromosome studies on fish of the suborder Notothenioidei collected in the Weddell Sea during EPOS 3 cruise. Cybium, 15, 271289.Google Scholar
Pedrosa-Harand, A., Souza de Almeida, C.C., Mosiolek, M., Blair, M.W., Schweizer, D. Guerra, M. 2006. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theoretical and Applied Genetics, 112, 924933.CrossRefGoogle ScholarPubMed
Phillips, R.B. 2007. Application of fluorescence in situ hybridization (FISH) to genome mapping in fishes. In Pisano, E., Ozouf-Costaz, C., Foresti, F. & Kapoor, B.G., eds. Fish cytogenetics. Enfield, NH: Science Publishers, 455471.CrossRefGoogle Scholar
Pisano, E. Ghigliotti, L. 2009. Ribosomal genes in notothenioid fishes: focus on the chromosomal organization. Marine Genomics, 2, 7580.CrossRefGoogle Scholar
Pisano, E. Ozouf-Costaz, C. 2003. Cytogenetics and evolution in extreme environments: the case of Antarctic fishes. In Val, A.L. & Kapoor, B.G., eds. Fish adaptations. Enfield, NH: Science Publishers, 309330.Google Scholar
Pisano, E., Angelini, C., Mazzei, F. Stanyon, R. 2000. Adaptive radiation in Antarctic notothenioid fish: studies of genomic change at chromosomal level. Italian Journal of Zoology, 67, S115S121.CrossRefGoogle Scholar
Pisano, E., Ghigliotti, L., Mazzei, F. Ozouf-Costaz, C. 2003. Cytogenetics of Notothenia angustata Hutton, 1875, an Antarctic fish living in non-Antarctic waters. In Huiskes, A.L., Gieskes, W.W.C., Rozema, J., Schorno, R.M.L, van der Vies, S.M. & Wolff, W.J., eds. Antarctic biology in a global context. Leiden: Backhuys, 117121.Google Scholar
Prirodina, V.P. 1997. The direction of the karyotype specialization in the suborder Notothenioidei (Pisces, Perciformes). Cybium, 21, 393398.Google Scholar
Prirodina, V. Ozouf-Costaz, C. 1995. Description of karyotypes of species of Harpagifer (Harpagiferidae, Notothenioidei) from the South Orkney Islands and Macquarie Island. Journal of Ichthyology, 35, 342343.Google Scholar
Rabova, M., Rab, P. Ozouf-Costaz, C. 1999. Extensive polymorphism of nucleolar organizer regions (NORs) in a leach fish, Cobitis vardarensis (Ostariophysi, Cobitidae) detected by different banding techniques and fluorescence in situ hybridization (FISH). Cytogenetics and Cell Genetics, 85, 96.Google Scholar
Ronquist, F. Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 15721574.CrossRefGoogle ScholarPubMed
Stage, D.E. Eickbush, T.H. 2007. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Research, 17, 18881897.CrossRefGoogle ScholarPubMed
Vacchi, M., Bottaro, M., Pisano, E., Eastman, J.T. Eakin, R.R. 2007. Aspects of gonadal morphology in the South Georgian plunderfish Artedidraco mirus (Perciformes: Artedidraconidae). Polar Biology, 30, 125131.CrossRefGoogle Scholar
Zhuo, L., Reed, K. Phillips, R. 1995. Hypervariability of ribosomal DNA at multiple chromosomal sites in lake trout (Salvelinus namaycush). Genome, 38, 487496.CrossRefGoogle ScholarPubMed