Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Vanden Berghe, G.
and
De Meyer, H.
1991.
On a correction of Numerov-like eigenvalue approximations for Sturm-Liouville problems.
Journal of Computational and Applied Mathematics,
Vol. 37,
Issue. 1-3,
p.
179.
Shampine, L. F.
and
Kraut, G.
1992.
Uniformly accurate Sturm-Liouville eigenvalues.
Computing,
Vol. 47,
Issue. 3-4,
p.
379.
Vanden Berghe, G.
De Meyer, H.
and
Van Daele, M.
1992.
A parallel approach to the modified Numerov-like eigenvalue determination for sturm-Liouville problems.
Computers & Mathematics with Applications,
Vol. 23,
Issue. 12,
p.
69.
Searles, Debra J.
and
von Nagy-Felsobuki, Ellak I.
1993.
Ab Initio Variational Calculations of Molecular Vibrational-Rotational Spectra.
Vol. 61,
Issue. ,
p.
82.
Goh, C.J.
Teo, K.L.
and
Agarwal, R.P.
1994.
Computing eigenvalues of Sturm-Liouville problems via optimal control theory.
Mathematical and Computer Modelling,
Vol. 19,
Issue. 10,
p.
1.
Vanden Berghe, G.
and
De Meyer, H.
1994.
A finite-element estimate with trigonometric hat functions for Sturm–Liouville eigenvalues.
Journal of Computational and Applied Mathematics,
Vol. 53,
Issue. 3,
p.
389.
Vanden Berghe, G.
Van Daele, M.
and
De Meyer, H.
1995.
A modified difference scheme for periodic and semiperiodic Sturm-Liouville problems.
Applied Numerical Mathematics,
Vol. 18,
Issue. 1-3,
p.
69.
Ghelardoni, Paolo
1997.
Approximations of Sturm-Liouville eigenvalues using Boundary Value Methods.
Applied Numerical Mathematics,
Vol. 23,
Issue. 3,
p.
311.
Mellor, W. E.
Kalotas, T. M.
and
Lee, A. R.
1997.
Eigenstates for internal rotors with angle dependent moment of inertia.
The Journal of Chemical Physics,
Vol. 106,
Issue. 17,
p.
6825.
Andrew, Alan L
2000.
Asymptotic correction of Numerov's eigenvalue estimates with natural boundary conditions.
Journal of Computational and Applied Mathematics,
Vol. 125,
Issue. 1-2,
p.
359.
Ghelardoni, P.
Gheri, G.
and
Marletta, M.
2001.
Spectral corrections for Sturm–Liouville problems.
Journal of Computational and Applied Mathematics,
Vol. 132,
Issue. 2,
p.
443.
Somali, S.
and
Oger, V.
2005.
Improvement of eigenvalues of Sturm–Liouville problem with t-periodic boundary conditions.
Journal of Computational and Applied Mathematics,
Vol. 180,
Issue. 2,
p.
433.
Çelik, İbrahim
and
Gokmen, Guzin
2005.
Approximate solution of periodic Sturm–Liouville problems with Chebyshev collocation method.
Applied Mathematics and Computation,
Vol. 170,
Issue. 1,
p.
285.
Yuan, Quan
He, Zhiqing
and
Leng, Huinan
2008.
An improvement for Chebyshev collocation method in solving certain Sturm–Liouville problems.
Applied Mathematics and Computation,
Vol. 195,
Issue. 2,
p.
440.
Chen, Lan
and
Ma, He-Ping
2008.
Approximate solution of the Sturm–Liouville problems with Legendre–Galerkin–Chebyshev collocation method.
Applied Mathematics and Computation,
Vol. 206,
Issue. 2,
p.
748.
Zhang, Xuecang
2010.
Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm–Liouville problems.
Applied Mathematics and Computation,
Vol. 217,
Issue. 5,
p.
2266.
Yıldız, Guldem
Yılmaz, Bulent
and
Veliev, O. A.
2013.
Asymptotic and Numerical Methods in Estimating Eigenvalues.
Mathematical Problems in Engineering,
Vol. 2013,
Issue. ,
p.
1.
Dinibütün, Seza
and
Veliev, O. A.
2013.
On the Estimations of the Small Periodic Eigenvalues.
Abstract and Applied Analysis,
Vol. 2013,
Issue. ,
p.
1.
YILMAZ, Bülent
2016.
The Effect of the Singular Potential Functions for Eigenvalues of Sturm-Lıouville Operators.
Mathematical Sciences and Applications E-Notes,
Vol. 4,
Issue. 1,
p.
15.
Nur, Cemile
2018.
On the estimations of the small eigenvalues of Sturm–Liouville operators with periodic and antiperiodic boundary conditions.
Boundary Value Problems,
Vol. 2018,
Issue. 1,