Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T07:40:41.580Z Has data issue: false hasContentIssue false

A generalization of the Bernstein polynomials based on the q-integers

Published online by Cambridge University Press:  17 February 2009

George M. Phillips
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, Scotland.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is concerned with a generalization of the Bernstein polynomials in which the approximated function is evaluated at points spaced in geometric progression instead of the equal spacing of the original polynomials.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Andrews, G. E., The Theory of Partitions (Addison-Wesley, Reading, Mass., 1976).Google Scholar
[2]Bernstein, S. N., “Démonstration du théorème de Weierstrass fondée”, Comm. Kharkov Math. Soc. 13 (1912) 12.Google Scholar
[3]Cheney, E. W., Introduction to Approximation Theory (McGraw-Hill, New York, 1966).Google Scholar
[4]Davis, P. J., Interpolation and Approximation (Dover, New York, 1976).Google Scholar
[5]Goodman, T. N. T., Oruç, H., and Phillips, G. M., “Convexity and generalized Bernstein polynomials”, Proc. Roy. Soc. Edin. 42 (1999) 179190.Google Scholar
[6]Hoschek, J. and Lasser, D., Fundamentals of Computer-Aided Geometric Design (Wellesley, Mass., 1993).Google Scholar
[7]Koçak, Z. F. and Phillips, G. M., “B-splines with geometric knot spacings”, BIT 34 (1994) 388399.Google Scholar
[8]Lee, S. L. and Phillips, G. M., “Polynomial interpolation at points of a geometric mesh on a triangle”, Proc. Roy. Soc. Edin. 108A (1988) 7587.CrossRefGoogle Scholar
[9]Lorentz, G. G., Approximation of Functions (Holt, Rinehart and Winston, New York, 1966).Google Scholar
[10]Oruç, H. and Phillips, G. M., “A generalization of the Bernstein polynomials”, Proc. Roy. Soc. Edin. 42 (1999) 403413.Google Scholar
[11]Phillips, G. M., “On generalized Bernstein polynomials”, in Numerical Analysis: A. R. Mitchell 75th Birthday Volume, (World Sci. Publishing, River Edge, NJ, 1996) 263269.CrossRefGoogle Scholar
[12]Phillips, G. M., “Bernstein polynomials based on the qintegers”, The heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin. Ann. Numer. Math. 4 (1997) 511518.Google Scholar
[13]Phillips, G. M., “A de Casteljau algorithm for generalized Bernstein polynomials”, BIT 37 (1997) 232236.CrossRefGoogle Scholar
[14]Phillips, G. M. and Taylor, P. J., Theory and Applications of Numerical Analysis, second ed. (Academic Press, London, 1996).Google Scholar
[15]Rivlin, T. J., An Introduction to the Approximation of Functions (Dover, New York, 1981).Google Scholar
[16]Schoenberg, I. J., “On polynomial interpolation at the points of a geometric progression”, Proc. Roy. Soc. Edin. 90A (1981) 195207.CrossRefGoogle Scholar