Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T14:35:42.146Z Has data issue: false hasContentIssue false

Dynamic of intoxication and detoxification in juveniles ofMytilus chilensis (Bivalvia: Mytilidae) exposed to paralytic shellfishtoxins

Published online by Cambridge University Press:  30 March 2011

Jorge M. Navarro*
Affiliation:
Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
Blanca L. Aguila
Affiliation:
Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
Fabiola Machmar
Affiliation:
Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
Oscar R. Chaparro
Affiliation:
Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
Andrea M. Contreras
Affiliation:
Instituto de Ciencias Marinas y Limnologicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
*
a Corresponding author:jnavarro@uach.cl
Get access

Abstract

Juveniles of the mussel Mytilus chilensis were exposed to a dietcontaining paralytic shellfish poisoning (PSP) toxins produced by the dinoflagellateAlexandrium catenella (strain ACC02). The feeding behaviour and thedynamics of intoxication and detoxification were evaluated over an intoxication period ofnine days, followed by a detoxification period of eight days. A significant reduction inthe feeding activity was measured during the first days of exposure to the PSP toxins(days 0 and 2), followed by a period of recovery observed on days 5 and 9, when theclearance rate of the contaminated mussels significantly increased. During thedetoxification period, the contaminated bivalves showed a total recovery of clearancerate, and no significant differences were observed between contaminated and controlgroups. The intoxication dynamic was characterised by a rapid and sustained increase inthe amount of PSP toxins accumulated in the tissues of the bivalves. Due to this increase,the level of PSP toxins critical for human consumption was reached on the first day, andat the end of the intoxication period, the mussels had accumulated 1601μg STX eq. 100 g-1 tissue. During the detoxification period, adecrease of PSP toxins was observed, down to 319 μg STX eq. 100g-1 tissue. The lower clearance rates observed over the first days ofexposure would produce a decrease in the energy intake and could affect the rate of growthof juveniles. Despite this initial effect, the rapid intoxication capacity of M.chilensis corroborates that this species is a good indicator for the earlydetection of harmful algal blooms.

Type
Brief Report
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardouil, M., Bohec, M., Cormerais, M., Bougrier, S., Lassus, P., 1993, Experimental study of the effects of a toxic microalgae diet on feeding of the oyster Crassostrea gigas (Thunberg). J. Shellfish Res. 12, 417422. Google Scholar
Blasco, D., Levasseur, M., Bonneau, E., Gelinas, R., Packard, T.T., 2003, Patterns of paralytic shellfish toxicity in the St. Lawrence region in relationship with the abundance and distribution of Alexandrium tamarense. Sci. Mar. (Barc.) 67, 261278. CrossRefGoogle Scholar
Bricelj, V.M., Connell, L., Konoki, K., MacQuarrie, S.P., Scheuer, T., Catterall, W.A., Trainer, V.L., 2005, Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434, 763767. CrossRefGoogle ScholarPubMed
Bricelj, V.M., Lee, J.H., Cembella, A.D., Anderson, D.M., 1990, Uptake kinetics of paralytic shellfish toxins from the dinoflagellate Alexandrium fundyense in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser. 63, 117188. CrossRefGoogle Scholar
Bricelj, V.M., Shumway, S.E., 1998, Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation. Rev. Fish. Sci. 6, 315383. CrossRefGoogle Scholar
Cembella, A.D., Shumway, S.E., Lewis, N., 1993, Anatomical distribution and spatio-temporal variation in paralytic shellfish toxin composition in two bivalve species from Gulf of Maine. J. Shellfish Res. 12, 389403. Google Scholar
Clement A., Aguilera A., Fuentes C., 2002, Análisis de marea roja en Archipiélago de Chiloé, contingencia verano 2002. XXII Congreso de Ciencias del Mar, 28–30 de mayo de 2002, Valdivia, Chile.
Coughlan, J., 1969, The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2, 356358. CrossRefGoogle Scholar
Cucci T.L., Shumway S.E., Newell R.C., Yentc C.M., 1985, A preliminary study of the effects of Gonyaulax tamarensis on feeding in bivalve molluscs. In: Anderson D.M., White A.W., Baden D.G. (Eds.), Toxic Dinoflagellates, Elsevier Sciences, NY, pp. 395–400.
Guéguen, M., Bardouil, M., Baron, R., Lassus, P., Truquet, P., Massardier, J., Amzil, Z., 2008, Detoxification of Pacific oyster Crassostrea gigas fed on diets of Skeletonema costatum with and without silt, following PSP contamination by Alexandrium minutum. Aquat. Living Resour. 21, 1320. CrossRefGoogle Scholar
Guillard R.R.L., 1975, Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L., Chanley, M.H. (Eds.), Culture of marine invertebrate animals, Plenum Press, NY, pp. 29–60.
Guillard R.R.L., 1995, Culture methods. In: Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., (Eds.), Manual on Harmful Marine Microalgae, IOC manuals and guides No. 33 UNESCO, Paris, pp. 45–62.
Hallegraeff G., 2003, Harmful algal blooms: a global overview. In: Hallegraeff G., Anderson D., Cembella A. (Eds.), Manual on Harmful Marine Microalgae, UNESCO, Paris, pp. 25–49.
Kwong, R.W.M., Wang, W.X., Lam, P.K.S., Yu, P.K.N., 2006, The uptake, distribution and elimination of paralytic shellfish toxins in mussels and fish exposed to toxic dinoflagellates. Aquat. Toxicol. 80, 8291. CrossRefGoogle ScholarPubMed
Lassus P., Fremy J.M., Ledoux M., Bardouil M., Bohec M., 1989, Patterns of experimental contamination by Protogonyaulax tamarensis in some French commercial shellfish. Toxicon 1313–1321.
Lee H.O., Jeon H.J., Han M.S., 2001, Paralytic shellfish toxins in the dinoflagellate Alexandrium tamarense and the mussel Mytilus edulis from Chinhae Bay, Korea in the spring of 1996 and 1997. In: Hallegraeff G.M., Blackburn S.I., Bolch C.J., Lewis R.J. (Eds.), Harmful Algae Blooms, UNESCO, Paris, pp. 348–351.
Li, S.C., Wang, W.X., Hsieh, D.P.F., 2001, Feeding and absorption of the toxic dinoflagellate Alexandrium tamarense by two marine bivalves from the South China Sea. Mar. Biol. 139, 617624. CrossRefGoogle Scholar
Li, S.C., Wang, W.X., Hsieh, D.P.F., 2002, Effects of toxic dinoflagellate Alexandrium tamarense on the energy budgets and growth of two marine bivalves. Mar. Environ. Res. 53, 145160. CrossRefGoogle ScholarPubMed
Marsden, I.D., Shumway, S.E., 1993, The effect of a toxic dinoflagellates (Alexandrium tamarense) on the oxygen uptake of juvenile filter-feeding bivalve molluscs. Comp. Biochem. Phys. A 106, 769773. CrossRefGoogle Scholar
Molinet, C., Lafon, A., Lembeye, G., Moreno, C.A., 2003, Spatial and temporal distribution patterns of blooms of Alexandrium catenella (Whedon and Kofoid) Balech 1985, on inland seas of northwest Patagonia, Chile. Rev. Chil. Hist. Nat. 76, 681698. CrossRefGoogle Scholar
Navarro, J.M., Contreras, A.M., 2010, An integrative response by Mytilus chilensis to the toxic dinoflagellate Alexandrium catenella. Mar. Biol. 157, 19671974. CrossRefGoogle Scholar
Navarro J.M., Jaramillo R., 1994, Evaluación de la oferta alimentaria natural disponible a organismos filtradores de la bahía de Yaldad (43°08; 73°44′), Sur de Chile. Rev. Biol. Mar. 29, 57–75.
Nielsen, M.V., Strömgren, T., 1991, Shell growth response of mussel (Mytilus edulis) exposed to toxic microalgae. Mar. Biol. 108, 263267. CrossRefGoogle Scholar
Sekiguchi, K., Sato, S., Ogata, T., Kaga, S., Kodama, M., 2001, Accumulation and depuration kinetics of paralytic shellfish toxins in the scallop Patinopecten yessoensis fed Alexandrium tamarense. Mar. Ecol. Prog. Ser. 220, 213218. CrossRefGoogle Scholar
Shumway, S.E., Cucci, T.L., 1987, The effects of the toxic dinoflagellate Protogonyaulax tamarensis on the feeding and behavior of bivalve molluscs. Aquat. Toxicol. 10, 927. CrossRefGoogle Scholar
Shumway S.E., Cucci T.L., Gainey L., Yentsch C.M., 1985, A preliminary study of the behavioral and physiological effects of Gonyaulax tamarensis on bivalve molluscs. In: Anderson D.M., White A.W., Bader D.G. (Eds.), Toxic Dinoflagellates, Elsevier, pp. 389–394.
Twarog, B.M., Hidaka, T., Yamaguchi, H., 1972, Resistence to tetrodotoxin and saxitoxin in nerves of bivalve mollusks. Toxicon 10, 273278. CrossRefGoogle Scholar
Utermohl, H., 1958, Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Verein. Limnol. 9, 138. Google Scholar
Vélez, P., Sierralta, J., Alcayaga, C., Fonseca, M., Loyola, H., Johns, D.C., Tomaselli, G.F., Suárez-Isla, B.A., 2001, A functional assay for paralytic shellfish toxins that uses recombinant sodium channels. Toxicon 39, 929935. CrossRefGoogle ScholarPubMed
White A.W., Shumway S.E., Whittaker D.K., 1993, Variation in levels of paralytic shellfish toxins among individual shellfish. In: Smayda T.J., Shimizu Y. (Eds.), Toxin Phytoplankton in the Sea, Elsevier, pp. 441–446.
Wildish, D., Lassus, P., Martin, J., Saulnier, A., Bardouil, M., 1998, Effect of the PSP-causing dinoflagellate, Alexandrium sp. on the initial feeding response of Crassostrea gigas. Aquat. Living Resour. 11, 3543. CrossRefGoogle Scholar